I have a design I've implemented using vhdl that is triggered based on a clock that sends an input signal to one of 8 output channels based on the sel input and also another 2 bit input. The elaborated design shows a lot of nesting due to the many if-else statements. So, I'm curious as to if there's a way to alleviate the nesting using case statements or some other method. I'm unfamiliar with doing this using case statements because I have two inputs that determine the output channel. The code that I currently have is displayed below.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--Inputs and outputs to entity
entity DSA_Worker is
Port ( DB_Select : in STD_LOGIC;
Atten : in STD_LOGIC_VECTOR ( 7 downto 0);
enable : in STD_LOGIC;
clk: in STD_LOGIC;
reset: in STD_LOGIC;
chip_select : in STD_LOGIC_VECTOR (1 downto 0);
DBA_TX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBA_TX2_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBA_RX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBA_RX2_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_TX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_TX2_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_RX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_RX2_DSA : out STD_LOGIC_VECTOR (7 downto 0));
end DSA_Worker;
architecture Behavioral of DSA_Worker is
begin
process(clk)
begin
if rising_edge(clk) then
--if reset is high, all outputs go to 0
if reset = '1'then
DBA_TX1_DSA <= (others =>'0');
DBA_TX2_DSA <= (others =>'0');
DBA_RX1_DSA <= (others =>'0');
DBA_RX2_DSA <= (others =>'0');
DBB_TX1_DSA <= (others =>'0');
DBB_TX2_DSA <= (others =>'0');
DBB_RX1_DSA <= (others =>'0');
DBB_RX2_DSA <= (others =>'0');
-- attenuation values sent to channels based on DB_select value(0/1) and chip select value
--DB_select - 0 is for DB-A and 1 for DB- B and chip_select determines the channel
elsif enable = '1'then
if(DB_Select='0' and chip_select = "00") then -- attenuation value sent to first channel
DBA_TX1_DSA(0) <= Atten(0);
DBA_TX1_DSA(1) <= Atten(1);
DBA_TX1_DSA(2) <= Atten(2);
DBA_TX1_DSA(3) <= Atten(3);
DBA_TX1_DSA(4) <= Atten(4);
DBA_TX1_DSA(5) <= Atten(5);
elsif (DB_Select='0' and chip_select = "01") then
DBA_TX2_DSA(0) <= Atten(0);
DBA_TX2_DSA(1) <= Atten(1);
DBA_TX2_DSA(2) <= Atten(2);
DBA_TX2_DSA(3) <= Atten(3);
DBA_TX2_DSA(4) <= Atten(4);
DBA_TX2_DSA(5) <= Atten(5);
elsif (DB_Select='0' and chip_select = "10") then
DBA_RX1_DSA(0) <= Atten(0);
DBA_RX1_DSA(1) <= Atten(1);
DBA_RX1_DSA(2) <= Atten(2);
DBA_RX1_DSA(3) <= Atten(3);
DBA_RX1_DSA(4) <= Atten(4);
DBA_RX1_DSA(5) <= Atten(5);
elsif (DB_Select='0' and chip_select = "11") then
DBA_RX2_DSA(0) <= Atten(0);
DBA_RX2_DSA(1) <= Atten(1);
DBA_RX2_DSA(2) <= Atten(2);
DBA_RX2_DSA(3) <= Atten(3);
DBA_RX2_DSA(4) <= Atten(4);
DBA_RX2_DSA(5) <= Atten(5);
-- Attenuation values being set for DB-B
elsif (DB_Select='1' and chip_select = "00") then
DBB_TX1_DSA(0) <= Atten(0);
DBB_TX1_DSA(1) <= Atten(1);
DBB_TX1_DSA(2) <= Atten(2);
DBB_TX1_DSA(3) <= Atten(3);
DBB_TX1_DSA(4) <= Atten(4);
DBB_TX1_DSA(5) <= Atten(5);
elsif (DB_Select='1' and chip_select = "01") then
DBB_TX2_DSA(0) <= Atten(0);
DBB_TX2_DSA(1) <= Atten(1);
DBB_TX2_DSA(2) <= Atten(2);
DBB_TX2_DSA(3) <= Atten(3);
DBB_TX2_DSA(4) <= Atten(4);
DBB_TX2_DSA(5) <= Atten(5);
elsif (DB_Select='1' and chip_select = "10") then
DBB_RX1_DSA(0) <= Atten(0);
DBB_RX1_DSA(1) <= Atten(1);
DBB_RX1_DSA(2) <= Atten(2);
DBB_RX1_DSA(3) <= Atten(3);
DBB_RX1_DSA(4) <= Atten(4);
DBB_RX1_DSA(5) <= Atten(5);
else
DBB_RX2_DSA(0) <= Atten(0);
DBB_RX2_DSA(1) <= Atten(1);
DBB_RX2_DSA(2) <= Atten(2);
DBB_RX2_DSA(3) <= Atten(3);
DBB_RX2_DSA(4) <= Atten(4);
DBB_RX2_DSA(5) <= Atten(5);
end if;
end if;
end if;
end process;
end Behavioral;
I did try to produce a simplified design using case statements as illustrated below
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity dsa_case is
Port (
DB_Select : in STD_LOGIC;
Atten : in STD_LOGIC_VECTOR ( 7 downto 0);
enable : in STD_LOGIC;
clk: in STD_LOGIC;
reset: in STD_LOGIC;
chip_select : in STD_LOGIC_VECTOR (1 downto 0);
DBA_TX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBA_TX2_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBA_RX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBA_RX2_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_TX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_TX2_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_RX1_DSA : out STD_LOGIC_VECTOR (7 downto 0);
DBB_RX2_DSA : out STD_LOGIC_VECTOR (7 downto 0));
end dsa_case;
architecture Behavioral of dsa_case is
begin
process(clk)
begin
if rising_edge(clk) then
if reset = '1' then
DBA_TX1_DSA <= (others =>'0');
DBA_TX2_DSA <= (others =>'0');
DBA_RX1_DSA <= (others =>'0');
DBA_RX2_DSA <= (others =>'0');
DBB_TX1_DSA <= (others =>'0');
DBB_TX2_DSA <= (others =>'0');
DBB_RX1_DSA <= (others =>'0');
DBB_RX2_DSA <= (others =>'0');
elsif enable = '1'then
-- DB_Select <='0';
case chip_select is
when "00"=> -- attenuation value sent to first channel
DBA_TX1_DSA(0) <= Atten(0);
DBA_TX1_DSA(1) <= Atten(1);
DBA_TX1_DSA(2) <= Atten(2);
DBA_TX1_DSA(3) <= Atten(3);
DBA_TX1_DSA(4) <= Atten(4);
DBA_TX1_DSA(5) <= Atten(5);
when "01"=>
DBA_TX2_DSA(0) <= Atten(0);
DBA_TX2_DSA(1) <= Atten(1);
DBA_TX2_DSA(2) <= Atten(2);
DBA_TX2_DSA(3) <= Atten(3);
DBA_TX2_DSA(4) <= Atten(4);
DBA_TX2_DSA(5) <= Atten(5);
when "10"=>
DBA_RX1_DSA(0) <= Atten(0);
DBA_RX1_DSA(1) <= Atten(1);
DBA_RX1_DSA(2) <= Atten(2);
DBA_RX1_DSA(3) <= Atten(3);
DBA_RX1_DSA(4) <= Atten(4);
DBA_RX1_DSA(5) <= Atten(5);
when "11"=>
DBA_RX2_DSA(0) <= Atten(0);
DBA_RX2_DSA(1) <= Atten(1);
DBA_RX2_DSA(2) <= Atten(2);
DBA_RX2_DSA(3) <= Atten(3);
DBA_RX2_DSA(4) <= Atten(4);
DBA_RX2_DSA(5) <= Atten(5);
-- Attenuation values being set for DB-B
-- DB_Select <= '1';
when "00"=>
DBB_TX1_DSA(0) <= Atten(0);
DBB_TX1_DSA(1) <= Atten(1);
DBB_TX1_DSA(2) <= Atten(2);
DBB_TX1_DSA(3) <= Atten(3);
DBB_TX1_DSA(4) <= Atten(4);
DBB_TX1_DSA(5) <= Atten(5);
-- DB_Select <= '1';
when "01" =>
DBB_TX2_DSA(0) <= Atten(0);
DBB_TX2_DSA(1) <= Atten(1);
DBB_TX2_DSA(2) <= Atten(2);
DBB_TX2_DSA(3) <= Atten(3);
DBB_TX2_DSA(4) <= Atten(4);
DBB_TX2_DSA(5) <= Atten(5);
-- DB_Select <= '1';
when "10"=>
DBB_RX1_DSA(0) <= Atten(0);
DBB_RX1_DSA(1) <= Atten(1);
DBB_RX1_DSA(2) <= Atten(2);
DBB_RX1_DSA(3) <= Atten(3);
DBB_RX1_DSA(4) <= Atten(4);
DBB_RX1_DSA(5) <= Atten(5);
when others=>
DBB_RX2_DSA(0) <= Atten(0);
DBB_RX2_DSA(1) <= Atten(1);
DBB_RX2_DSA(2) <= Atten(2);
DBB_RX2_DSA(3) <= Atten(3);
DBB_RX2_DSA(4) <= Atten(4);
DBB_RX2_DSA(5) <= Atten(5);
end case;
end if;
end if;
end process;
end Behavioral;
However, it did fail to produce an elaborated design due to 5 errors, all like this
[Synth 8-517] overlapping choice 2'b00 in case statement ["/home/n310-osp/case_statement_design/case_statement_design.srcs/sources_1/new/dsa_case.vhd":108]
Personally I don't mind your if-else structure. I think you mostly have a readability issue, with a lot of redundancy (in this case the check on DB_Select inside each case) and inconsistent indentation.
This is how I'd improve the code inside the process
:
process(clk)
begin
if rising_edge(clk) then
--if reset is high, all outputs go to 0
if reset = '1' then
DBA_TX1_DSA <= (others=>'0');
DBA_TX2_DSA <= (others=>'0');
DBA_RX1_DSA <= (others=>'0');
DBA_RX2_DSA <= (others=>'0');
DBB_TX1_DSA <= (others=>'0');
DBB_TX2_DSA <= (others=>'0');
DBB_RX1_DSA <= (others=>'0');
DBB_RX2_DSA <= (others=>'0');
-- attenuation values sent to channels based on DB_select value(0/1) and chip select value
-- DB_select - 0 is for DB-A and 1 for DB- B and chip_select determines the channel
elsif enable = '1'then
if DB_Select = '0' then
if chip_select = "00" then -- attenuation value sent to first channel
DBA_TX1_DSA(5 downto 0) <= Atten(5 downto 0);
elsif chip_select = "01" then
DBA_TX2_DSA(5 downto 0) <= Atten(5 downto 0);
elsif chip_select = "10" then
DBA_RX1_DSA(5 downto 0) <= Atten(5 downto 0);
else
DBA_RX2_DSA(5 downto 0) <= Atten(5 downto 0);
end if;
else -- Attenuation values being set for DB-B
if chip_select = "00" then
DBB_TX1_DSA(5 downto 0) <= Atten(5 downto 0);
elsif chip_select = "01" then
DBB_TX2_DSA(5 downto 0) <= Atten(5 downto 0);
elsif chip_select = "10" then
DBB_RX1_DSA(5 downto 0) <= Atten(5 downto 0);
else
DBB_RX2_DSA(5 downto 0) <= Atten(5 downto 0);
end if;
end if;
end if;
end if;
end process;
end Behavioral;
You could replace the if-else structure with when-else, but that's just a matter of preference.