Search code examples
c++c++17standard-library

Why 'is_convertible' here in <utility> std::pair (STL)?


    template<class _Other1,
    class _Other2,
    class = enable_if_t<is_constructible<_Ty1, _Other1>::value
                    && is_constructible<_Ty2, _Other2>::value>,
    enable_if_t<is_convertible<_Other1, _Ty1>::value
            && is_convertible<_Other2, _Ty2>::value, int> = 0>
    constexpr pair(pair<_Other1, _Other2>&& _Right)
        _NOEXCEPT_OP((is_nothrow_constructible<_Ty1, _Other1>::value
            && is_nothrow_constructible<_Ty2, _Other2>::value))
    : first(_STD forward<_Other1>(_Right.first)),
        second(_STD forward<_Other2>(_Right.second))
    {   // construct from moved compatible pair
    }

template<class _Other1,
    class _Other2,
    class = enable_if_t<is_constructible<_Ty1, _Other1>::value
                    && is_constructible<_Ty2, _Other2>::value>,
    enable_if_t<!is_convertible<_Other1, _Ty1>::value
            || !is_convertible<_Other2, _Ty2>::value, int> = 0>
    constexpr explicit pair(pair<_Other1, _Other2>&& _Right)
        _NOEXCEPT_OP((is_nothrow_constructible<_Ty1, _Other1>::value
            && is_nothrow_constructible<_Ty2, _Other2>::value))
    : first(_STD forward<_Other1>(_Right.first)),
        second(_STD forward<_Other2>(_Right.second))
    {   // construct from moved compatible pair
    }

utility file for VS 2017 line 206, _Other1 and _Other2 are parameters, this is std::pair's construction func, and we are using Other1 and Other2 to initialize "first" and "second",

I think is_constructible is enough, why are we using is_convertible here?
and by the way, what's the difference between class = enable_if_t< ... ::value> and enable_if_t< ... ::value,int> = 0?


Solution

  • I think is_constructible is enough, why are we using is_convertible here?

    The goal here is to properly handle explicit construction. Consider just doing the former and trying to write a wrapper (using REQUIRES here to hide whatever approach to SFINAE you want):

    template <class T>
    class wrapper {
    public:
        template <class U, REQUIRES(std::is_constructible<T, U&&>::value)>
        wrapper(U&& u) : val(std::forward<U>(u)) { }
    private:
        T val;
    };
    

    If that's all we had, then:

    struct Imp { Imp(int ); };
    struct Exp { explicit Exp(int ); };
    
    Imp i = 0; // ok
    Exp e = 0; // error
    wrapper<Imp> wi = 0; // ok
    wrapper<Exp> we = 0; // ok?!?
    

    We definitely don't want that last one to be okay - that breaks the expectation for Exp!

    Now, s_constructible<T, U&&> is true if it's possible to direct-initialize a T from a U&& - if T(std::declval<U&&>()) is a valid expression.

    is_convertible<U&&, T>, on the other hand, checks if it is possible to copy-initialize a T from a U&&. That is, if T copy() { return std::declval<U&&>(); } is valid.

    The difference is that the latter does not work if the conversion is explicit:

    +-----+--------------------------+------------------------+
    |     | is_constructible<T, int> | is_convertible<int, T> |
    +-----+--------------------------+------------------------+
    | Imp |        true_type         |       true_type        |
    | Exp |        true_type         |       false_type       |
    +-----+--------------------------+------------------------+
    

    In order to correctly propagate explicitness, we need to use both traits together - and we can create meta-traits out of them:

    template <class T, class From>
    using is_explicitly_constructible = std::integral_constant<bool,
        std::is_constructible<T, From>::value &&
        !std::is_convertible<From, T>::value>;
    
    template <class T, class From>
    using is_implicitly_constructible = std::integral_constant<bool,
        std::is_constructible<T, From>::value &&
        std::is_convertible<From, T>::value>;
    

    These two traits are disjoint, so we can write two constructor templates that are definitely not both viable, where one constructor is explicit and the other is not:

    template <class T>
    class wrapper {
    public:
        template <class U, REQUIRES(is_explicitly_constructible<T, U&&>::value)>
        explicit wrapper(U&& u) : val(std::forward<U>(u)) { }
    
        template <class U, REQUIRES(is_implicitly_constructible<T, U&&>::value)>
        wrapper(U&& u) : val(std::forward<U>(u)) { }
    private:
        T val;
    };
    

    This gives us the desired behavior:

    wrapper<Imp> wi = 0; // okay, calls non-explicit ctor
    wrapper<Exp> we = 0; // error
    wrapper<Exp> we2(0); // ok
    

    This is what the implementation is doing here - except instead of the two meta-traits they have all of the conditions written out explicitly.