I have a PySpark dataframe that has a string column that is a large number(up to 40 digits). My goal is to sort it. I tried to cast to decimal, but it doesn't work if the number is more than 38 digits. Here is an example dataframe to illustrate the issue.
from pyspark.sql import Row
# Column price has a 40 digit number.
product_updates = [
{'product_id': '00001', 'product_name': 'Heater', 'price': '1111111111111111111111111111111111111111', 'category': 'Electronics'},
{'product_id': '00006', 'product_name': 'Chair', 'price': '50', 'category': 'Furniture'},
{'product_id': '00007', 'product_name': 'Desk', 'price': '60', 'category': 'Furniture'}
]
df_product_updates = spark.createDataFrame(Row(**x) for x in product_updates)
# Order by price
df_product_updates.createOrReplaceTempView("sort_price")
df_sort_price = spark.sql(f"""
select *,
row_number() over (order by price DESC) rn
from sort_price
""")
df_sort_price.show(truncate=False)
Is there a way to compare the numbers so that the largest one is ranked 1?
+----------+------------+----------------------------------------+-----------+---+
|product_id|product_name|price |category |rn |
+----------+------------+----------------------------------------+-----------+---+
|00007 |Desk |60 |Furniture |1 |
|00006 |Chair |50 |Furniture |2 |
|00001 |Heater |1111111111111111111111111111111111111111|Electronics|3 |
+----------+------------+----------------------------------------+-----------+---+
thank you
You could sort by your price column cast to a double in descending order:
import pyspark.sql.functions as F
from pyspark.sql.window import Window
window = Window.orderBy(F.col("price").astype("double").desc())
df_product_updates.withColumn("rn", F.row_number().over(window)).show(truncate=False)
+----------+------------+----------------------------------------+-----------+---+
|product_id|product_name|price |category |rn |
+----------+------------+----------------------------------------+-----------+---+
|00001 |Heater |1111111111111111111111111111111111111111|Electronics|1 |
|00007 |Desk |60 |Furniture |2 |
|00006 |Chair |50 |Furniture |3 |
+----------+------------+----------------------------------------+-----------+---+
Note that here I just ordered by the casted column, the final dataframe still has the original schema (so your price
column is still a StringType
)
If you want this using SQL you can do this:
df_sort_price = spark.sql(
f"""
select *, row_number() over (order by cast(price as double) desc) rn
from sort_price
"""
)