Search code examples
apache-sparkpyspark

Cast string column to struct in a nested structure PySpark


I have the following schema:

|--items : array
   |-- element : struct
       |-- id : long
       |-- value : double        
       |-- stock : array
           |-- element : string

How can I access the stock column to cast it to a struct using withColumn?

I’ve tried with no success:

df = df.withColumn(
     ‘items’,
     F.col(‘items’).withField(
        ‘stock’,
        F.structure(
          F.lit(None).cast(‘long’).alias(‘id’),
          F.lit(None).cast(‘double’).alias(‘val’)   
        )
     )
)

My desired output schema is:

|--items : array
   |-- element : struct
       |-- id : long
       |-- value : double        
       |-- stock : array
           |-- element : struct
               |-- id : long
               |-- val : double

Solution

  • You need to transform "stock" from an array of strings to an array of structs

    So you need to use the explode function on "items" array so data from there can go into separate rows.Then you need to use withColumn to transform the "stock" array within these exploded rows. Finally you need to use collect_list to reassemble the rows back into a single array.

    from pyspark.sql import SparkSession
    from pyspark.sql import functions as F
    from pyspark.sql.types import (
        StructType,
        StructField,
        LongType,
        DoubleType,
        ArrayType,
        StringType,
    )
    
    # Initialize Spark session
    spark = SparkSession.builder.appName("Nested Schema Transformation").getOrCreate()
    
    # Sample Data
    data = [(1, [(1, 1.0, ["a", "b"]), (2, 2.0, ["c", "d"])])]
    schema = StructType(
        [
            StructField("id", LongType()),
            StructField(
                "items",
                ArrayType(
                    StructType(
                        [
                            StructField("id", LongType()),
                            StructField("value", DoubleType()),
                            StructField("stock", ArrayType(StringType())),
                        ]
                    )
                ),
            ),
        ]
    )
    
    df = spark.createDataFrame(data, schema)
    
    # Explode 'items' array
    df_exploded = df.select("id", F.explode("items").alias("item"))
    
    # Transform 'stock' to desired schema
    transformed_stock_schema = ArrayType(
        StructType([StructField("id", LongType()), StructField("val", DoubleType())])
    )
    
    df_transformed = df_exploded.withColumn(
    "new_stock",
    F.expr("transform(item.stock, x -> named_struct('id', CAST(x AS long), 'val', CAST(x AS double)))"))
    
    # Collect back to original array format
    df_final = df_transformed.groupBy("id").agg(
        F.collect_list(F.struct("item.id", "item.value", "new_stock")).alias("items")
    )
    
    # Show the result schema
    df_final.printSchema()
    

    The resultant schema is:

     root
     |-- id: long (nullable = true)
     |-- items: array (nullable = false)
     |    |-- element: struct (containsNull = false)
     |    |    |-- id: long (nullable = true)
     |    |    |-- value: double (nullable = true)
     |    |    |-- new_stock: array (nullable = true)
     |    |    |    |-- element: struct (containsNull = false)
     |    |    |    |    |-- id: long (nullable = true)
     |    |    |    |    |-- val: double (nullable = true)