I just started with Great Expectations library and I want to know if it is possible to use it to remove invalidated data from Pandas DataFrame. And how I can do that if is possible ? Also I want to insert invalid data to PostgreSQL database.
I didn't find anything about this in the documentation and on searching the Web.
Later Edit : To clarify: I need that in the case great expectation for example find 5 rows in a DataFrame that are invalid (for example df.expect_column_values_to_not_be_null('age') has 5 rows with null) to remove them from original DataFrame and insert them in a PostgreSQL errors table
Great Expectations
is a powerful tool to validate data.
Like all powerful tools, it's not that straightforward.
You can start from here:
import great_expectations as ge
import numpy as np
import pandas as pd
# get some random numbers and create a pandas df
df_raw = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
# initialize a "great_expectations" df
df = ge.from_pandas(df_raw)
# search for invalidate data on column 'A'.
# In this case, i'm looking for any null value from column 'A'.
df.expect_column_values_to_not_be_null('A')
Results:
{
"exception_info": null,
"expectation_config": {
"expectation_type": "expect_column_values_to_not_be_null",
"kwargs": {
"column": "A",
"result_format": "BASIC"
},
"meta": {}
},
"meta": {},
"success": true,
"result": {
"element_count": 100,
"unexpected_count": 0,
"unexpected_percent": 0.0,
"partial_unexpected_list": []
}
}
Look at the response : good news !!!
There aren't null
values in my df.
"unexpected_count"
is equal to 0
API Reference : https://legacy.docs.greatexpectations.io/en/latest/autoapi/great_expectations/index.html
EDIT: If you need simply to find some invalid values and split your df into:
maybe you dont need "great_expectations"
. you can use a function like this:
import pandas as pd
my_df = pd.DataFrame({'A': [1,2,1,2,3,0,1,1,5,2]})
def check_data_quality(dataframe):
df = dataframe
clean_df = df[df['A'].isin([1, 2])]
dirty_df = df[df["A"].isin([1, 2]) == False]
return {'clean': clean_df,
'dirty': dirty_df}
my_df_clean = check_data_quality(my_df)['clean']
my_df_dirty = check_data_quality(my_df)['dirty']