I have to implement a simple "unique_ptr" class supporting only a constructor, destructor, –>, *, and release(). And I did below.
However, it feels weird to write "up.operator->()" to get the pointer p. I would be more logical to write "up->p". But how do I do that? Thanks!
#include <iostream>
#include <stdexcept>
template <class T>
class unique_ptr
{
T *p;
public:
unique_ptr(T *ptr)
: p{ptr}
{
}
~unique_ptr() { delete p; }
T *operator->() const { return p; } // returns a pointer
T operator*() const { return *p; }
T *release()
{
T *ptr = p;
p = nullptr;
return ptr;
}
};
template <class T>
void print(const unique_ptr<T> &up, const std::string &s)
{
std::cout << s << " up.operator->(): " << up.operator->() << '\n';
std::cout << s << " up.operator*(): " << up.operator*() << '\n';
}
int main()
try
{
int *ptr = new int(10);
unique_ptr<int> up(ptr);
print(up, "up: ");
}
catch (std::exception &e)
{
std::cerr << "exception: " << e.what() << '\n';
return 1;
}
catch (...)
{
std::cerr << "exception\n";
return 2;
}
However, it feels weird to write "up.operator->()" to get the pointer p.
It feels weird because the member access operator is not generally used to get a pointer to the object (although you can do it using the operator->()
syntax, as you demonstrated). Member access operator is used to access members of the object. In your example, you have a unique pointer of int
. int
doesn't have a member, so it doesn't make sense to use the member access operator.
Here is an example of how to use it:
struct S {
int member;
};
unique_ptr<S> up(new S{10});
int value_of_member = up->member;
would be more logical to write "up->p"
That wouldn't be logical unless p
is a member of the pointed object.
How to create an operator-> for a class unique_ptr
Like you did in the example. As far as I can tell, there was no problem with how you create the operator, but rather how to use it.
P.S. Your unique pointer is copyable, movable and assignable, but those operations are horribly broken leading to undefined behaviour. See rule of 5.