Can a function tell what's calling it, through the use of memory addresses maybe? For example, function foo();
gets data on whether it is being called in main();
rather than some other function?
If so, is it possible to change the content of foo();
based on what is calling it?
Example:
int foo()
{
if (being called from main())
printf("Hello\n");
if (being called from some other function)
printf("Goodbye\n");
}
This question might be kind of out there, but is there some sort of C trickery that can make this possible?
For highly optimized C it doesn't really make sense. The harder the compiler tries to optimize the less the final executable resembles the source code (especially for link-time code generation where the old "separate compilation units" problem no longer prevents lots of optimizations). At least in theory (but often in practice for some compilers) functions that existed in the source code may not exist in the final executable (e.g. may have been inlined into their caller); functions that didn't exist in the source code may be generated (e.g. compiler detects common sequences in many functions and "out-lines" them into a new function to avoid code duplication); and functions may be replaced by data (e.g. an "int abcd(uint8_t a, uint8_t b)
" replaced by a abcd_table[a][b]
lookup table).
For strict C (no extensions or hacks), no. It simply can't support anything like this because it can't expect that (for any compiler including future compilers that don't exist yet) the final output/executable resembles the source code.
An implementation defined extension, or even just a hack involving inline assembly, may be "technically possible" (especially if the compiler doesn't optimize the code well). The most likely approach would be to (ab)use debugging information to determine the caller from "what the function should return to when it returns".
A better way for a compiler to support a hypothetical extension like this may be for the compiler to use some of the optimizations I mentioned - specifically, split the original foo()
into 2 separate versions where one version is only ever called from main()
and the other version is used for other callers. This has the bonus of letting the compiler optimize out the branches too - it could become like int foo_when_called_from_main() { printf("Hello\n"); }
, which could be inlined directly into the caller, so that neither version of foo
exists in the final executable. Of course if foo()
had other code that's used by all callers then that common code could be lifted out into a new function rather than duplicating it (e.g. so it might become like int foo_when_called_from_main() { printf("Hello\n"); foo_common_code(); }
).
There probably isn't any hypothetical compiler that works like that, but there's no real reason you can't do these same optimizations yourself (and have it work on all compilers).
Note: Yes, this was just a crafty way of suggesting that you can/should refactor the code so that it doesn't need to know which function is calling it.