I am trying to use a glsl shader with p5js to create a simulation like the game of life. To do that I want to create a shader which will take a texture as uniform and which will draw a new texture based on this previous texture. In a next iteration this new texture will be used as uniform and that should allow me create a simulation following the idea exposed here. I am experienced with p5.js but I'm completely new to shader programming so I'm probably missing something.
For now my code is as straightforward as possible:
preload()
function, I create a texture using the createImage()
function and setup some pixels to be white and the others to be black.setup()
function I use this texture to run the shader a first time to create a new texture. I also set a timer to run the shader at regular intervals and draw the result in a buffer.draw()
function I draw the buffer in the canvas.My issue is that at some point the y
coordinates in my code seems to get inverted and I don't understand why. My understanding is that my code should show a still image but each time I run the shader the image is inverted. Here is what I mean:
I am not sure if my issue comes from how I use glsl or how I use p5 or a mix of both. Can someone explain to me where this weird y
inversion comes from?
Here is my minimal reproducible example (which is also in the p5 editor here):
The sketch file:
const sketch = (p5) => {
const D = 100;
let initialTexture;
p5.preload = () => {
// Create the initial image
initialTexture = p5.createImage(D, D);
initialTexture.loadPixels();
for (let i = 0; i < initialTexture.width; i++) {
for (let j = 0; j < initialTexture.height; j++) {
const alive = i === j || i === 10 || j === 40;
const color = p5.color(250, 250, 250, alive ? 250 : 0);
initialTexture.set(i, j, color);
}
}
initialTexture.updatePixels();
// Initialize the shader
shader = p5.loadShader('uniform.vert', 'test.frag');
};
p5.setup = () => {
const canvas = p5.createCanvas(D, D, p5.WEBGL);
canvas.parent('canvasDiv');
// Create the buffer the shader will draw on
graphics = p5.createGraphics(D, D, p5.WEBGL);
graphics.shader(shader);
/*
* Initial step to setup the initial texture
*/
// Used to normalize the frag coordinates
shader.setUniform('u_resolution', [p5.width, p5.height]);
// First state of the simulation
shader.setUniform('u_texture', initialTexture);
graphics.rect(0, 0, p5.width, p5.height);
// Call the shader each time interval
setInterval(updateSimulation, 1009);
};
const updateSimulation = () => {
// Use the previous state as a texture
shader.setUniform('u_texture', graphics);
graphics.rect(0, 0, p5.width, p5.height);
};
p5.draw = () => {
p5.background(0);
// Use the buffer on the canvas
p5.image(graphics, -p5.width / 2, -p5.height / 2);
};
};
new p5(sketch);
The fragment shader which for now only takes the color of the texture and reuses it (I tried using st
instead of uv
to no avail):
precision highp float;
uniform vec2 u_resolution;
uniform sampler2D u_texture;
// grab texcoords from vert shader
varying vec2 vTexCoord;
void main() {
// Normalize the position between 0 and 1
vec2 st = gl_FragCoord.xy/u_resolution.xy;
// Get the texture coordinate from the vertex shader
vec2 uv = vTexCoord;
// Get the color at the texture coordinate
vec4 c = texture2D(u_texture, uv);
// Reuse the same color
gl_FragColor = c;
}
And the vertex shader which I took from an example and does nothing excepted passing the coordinates:
/*
* vert file and comments from adam ferriss https://github.com/aferriss/p5jsShaderExamples with additional comments from Louise Lessel
*/
precision highp float;
// This “vec3 aPosition” is a built in shader functionality. You must keep that naming.
// It automatically gets the position of every vertex on your canvas
attribute vec3 aPosition;
attribute vec2 aTexCoord;
varying vec2 vTexCoord;
// We always must do at least one thing in the vertex shader:
// tell the pixel where on the screen it lives:
void main() {
// copy the texcoords
vTexCoord = aTexCoord;
// copy the position data into a vec4, using 1.0 as the w component
vec4 positionVec4 = vec4(aPosition, 1.0);
positionVec4.xy = positionVec4.xy * 2.0 - 1.0;
// Send the vertex information on to the fragment shader
// this is done automatically, as long as you put it into the built in shader function “gl_Position”
gl_Position = positionVec4;
}
Long story short: the texture coordinates for a rectangle or a plane drawn with p5.js are (0, 0) in the bottom left, and (1, 1) in the top right, where as the coordinate system for sampling values from a texture are (0, 0) in the top left and (1, 1) in the bottom right. You can verify this by commenting out your color sampling code in your fragment shader and using the following:
float val = (uv.x + uv.y) / 2.0;
gl_FragColor = vec4(val, val, val, 1.0);
As you can see by the resulting image:
The value (0 + 0) / 2
results in black in the lower left, and (1 + 1) / 2
results in white in the upper right.
So, to sample the correct portion of the texture you just need to flip the y
component of the uv
vector:
texture2D(u_texture, vec2(uv.x, 1.0 - uv.y));
const sketch = (p5) => {
const D = 200;
let initialTexture;
p5.preload = () => {
// This doesn't actually need to go in preload
// Create the initial image
initialTexture = p5.createImage(D, D);
initialTexture.loadPixels();
for (let i = 0; i < initialTexture.width; i++) {
for (let j = 0; j < initialTexture.height; j++) {
// draw a big checkerboard
const alive = (p5.round(i / 10) + p5.round(j / 10)) % 2 == 0;
const color = alive ? p5.color('white') : p5.color(150, p5.map(j, 0, D, 50, 200), p5.map(i, 0, D, 50, 200));
initialTexture.set(i, j, color);
}
}
initialTexture.updatePixels();
};
p5.setup = () => {
const canvas = p5.createCanvas(D, D, p5.WEBGL);
// Create the buffer the shader will draw on
graphics = p5.createGraphics(D, D, p5.WEBGL);
// Initialize the shader
shader = graphics.createShader(vert, frag);
graphics.shader(shader);
/*
* Initial step to setup the initial texture
*/
// Used to normalize the frag coordinates
shader.setUniform('u_resolution', [p5.width, p5.height]);
// First state of the simulation
shader.setUniform('u_texture', initialTexture);
graphics.rect(0, 0, p5.width, p5.height);
// Call the shader each time interval
setInterval(updateSimulation, 100);
};
const updateSimulation = () => {
// Use the previous state as a texture
shader.setUniform('u_texture', graphics);
graphics.rect(0, 0, p5.width, p5.height);
};
p5.draw = () => {
p5.background(0);
// Use the buffer on the canvas
p5.texture(graphics);
p5.rect(-p5.width / 2, -p5.height / 2, p5.width, p5.height);
};
const frag = `
precision highp float;
uniform vec2 u_resolution;
uniform sampler2D u_texture;
// grab texcoords from vert shader
varying vec2 vTexCoord;
varying vec2 vPos;
void main() {
// Get the texture coordinate from the vertex shader
vec2 uv = vTexCoord;
gl_FragColor = texture2D(u_texture, vec2(uv.x, 1.0 - uv.y));
//// For debugging uv coordinate orientation
// float val = (uv.x + uv.y) / 2.0;
// gl_FragColor = vec4(val, val, val, 1.0);
}
`;
const vert = `
/*
* vert file and comments from adam ferriss https://github.com/aferriss/p5jsShaderExamples with additional comments from Louise Lessel
*/
precision highp float;
// This “vec3 aPosition” is a built in shader functionality. You must keep that naming.
// It automatically gets the position of every vertex on your canvas
attribute vec3 aPosition;
attribute vec2 aTexCoord;
varying vec2 vTexCoord;
// We always must do at least one thing in the vertex shader:
// tell the pixel where on the screen it lives:
void main() {
// copy the texcoords
vTexCoord = aTexCoord;
// copy the position data into a vec4, using 1.0 as the w component
vec4 positionVec4 = vec4(aPosition, 1.0);
// This maps positions 0..1 to -1..1
positionVec4.xy = positionVec4.xy * 2.0 - 1.0;
// Send the vertex information on to the fragment shader
// this is done automatically, as long as you put it into the built in shader function “gl_Position”
gl_Position = positionVec4;
}`;
};
new p5(sketch);
<script src="https://cdn.jsdelivr.net/npm/p5@1.3.1/lib/p5.js"></script>