Basic Question
Is there any way to event recording an playback within a time-sensitive (framerate independent) system?
Any help - including a simple "No sorry it is impossible" - would be greatly appreciated. I have spent almost 20 hours working on this over the past few weekends and am driving myself crazy.
Full Details
This is being currently aimed at a game but the libraries I'm writing are designed to be more general and this concept applies to more than just my C++ coding.
I have some code that looks functionally similar this... (it is written in C++0x but I'm taking some liberties to make it more compact)
void InputThread()
{
InputAxisReturn AxisState[IA_SIZE];
while (Continue)
{
Threading()->EventWait(InputEvent);
Threading()->EventReset(InputEvent);
pInput->GetChangedAxis(AxisState);
//REF ALPHA
if (AxisState[IA_GAMEPAD_0_X].Changed)
{
X_Axis = AxisState[IA_GAMEPAD_0_X].Value;
}
}
}
And I have a separate thread that looks like this...
//REF BETA
while (Continue)
{
//Is there a message to process?
StandardWindowsPeekMessageProcessing();
//GetElapsedTime() returns a float of time in seconds since its last call
UpdateAll(LoopTimer.GetElapsedTime());
}
Now I'd like to record input events for playback for testing and some limited replay functionality.
I can easily record the events with precision timing by simply inserting the following code where I marked //REF ALPHA
//REF ALPHA
EventRecordings.pushback(EventRecording(TimeSinceRecordingBegan, AxisState));
The real issue is playing these back. My LoopTimer is extremely high precision using the High Performance Counter (QueryPreformanceCounter). This means that it is nearly impossible to hit the same time difference using code like below in place of //REF BETA
// REF BETA
NextEvent = EventRecordings.pop_back()
Time TimeSincePlaybackBegan;
while (Continue)
{
//Is there a message to process?
StandardWindowsPeekMessageProcessing();
//Did we reach the next event?
if (TimeSincePlaybackBegan >= NextEvent.TimeSinceRecordingBegan)
{
if (NextEvent.AxisState[IA_GAMEPAD_0_X].Changed)
{
X_Axis = NextEvent.AxisState[IA_GAMEPAD_0_X].Value;
}
NextEvent = EventRecordings.pop_back();
}
//GetElapsedTime() returns a float of time in seconds since its last call
Time elapsed = LoopTimer.GetElapsedTime()
UpdateAll(elapsed);
TimeSincePlabackBegan += elapsed;
}
The issue with this approach is that you will almost never hit the exact same time so you will have a few microseconds where the playback doesn't match the recording.
I also tried event snapping. Kind of a confusing term but basically if the TimeSincePlaybackBegan > NextEvent.TimeSinceRecordingBegan then TimeSincePlaybackBegan = NextEvent.TimeSinceRecordingBegan and ElapsedTime was altered to suit.
It had some interesting side effects which you would expect (like some slowdown) but it unfortunately still resulted in the playback de-synchronizing.
For some more background - and possibly a reason why my time snapping approach didn't work - I'm using BulletPhysics somewhere down that UpdateAll call. Kind of like this...
void Update(float diff)
{
static const float m_FixedTimeStep = 0.005f;
static const uint32 MaxSteps = 200;
//Updates the fps
cWorldInternal::Update(diff);
if (diff > MaxSteps * m_FixedTimeStep)
{
Warning("cBulletWorld::Update() diff > MaxTimestep. Determinism will be lost");
}
pBulletWorld->stepSimulation(diff, MaxSteps, m_FixedTimeStep);
}
But I also tried with pBulletWorkd->stepSimulation(diff, 0, 0) which according to http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Stepping_the_World should have done the trick but still with no avail.
Answering my own question for anyone else who stumbles upon this.
Basically if you want deterministic recording and playback you need to lock the frame-rate. If the system cannot handle the frame-rate you must introduce slowdown or risk dsyncronization.
After two weeks of additional research I've decided it is just not possible due to floating point inadequacies and the fact that floating point numbers are not necessarily associative.
The only solution to have a deterministic engine that relies on floating point numbers is to have a stable and fixed frame-rate. Any change in the frame-rate will - across a long term - result in the playback becoming desynchronized.