How to write an INNER JOIN query between two data sources that one of them has a dash as it's schema name
Executing the following query on the Druid SQL binary results in a query error
SELECT *
FROM first
INNER JOIN "second-schema" on first.device_id = "second-schema".device_id;
org.apache.druid.java.util.common.ISE: Cannot build plan for query
Is this the correct syntax when trying to refrence a data source that has a dash in it's name?
Schema
[
{
"dataSchema": {
"dataSource": "second-schema",
"parser": {
"type": "string",
"parseSpec": {
"format": "json",
"timestampSpec": {
"column": "ts_start"
},
"dimensionsSpec": {
"dimensions": [
"etid",
"device_id",
"device_name",
"x_1",
"x_2",
"x_3",
"vlan",
"s_x",
"d_x",
"d_p",
"msg_type"
],
"dimensionExclusions": [],
"spatialDimensions": []
}
}
},
"metricsSpec": [
{ "type": "hyperUnique", "name": "conn_id_hll", "fieldName": "conn_id"},
{
"type": "count",
"name": "event_count"
}
],
"granularitySpec": {
"type": "uniform",
"segmentGranularity": "HOUR",
"queryGranularity": "minute"
}
},
"ioConfig": {
"type": "realtime",
"firehose": {
"type": "kafka-0.8",
"consumerProps": {
"zookeeper.connect": "localhost:2181",
"zookeeper.connectiontimeout.ms": "15000",
"zookeeper.sessiontimeout.ms": "15000",
"zookeeper.synctime.ms": "5000",
"group.id": "flow-info",
"fetch.size": "1048586",
"autooffset.reset": "largest",
"autocommit.enable": "false"
},
"feed": "flow-info"
},
"plumber": {
"type": "realtime"
}
},
"tuningConfig": {
"type": "realtime",
"maxRowsInMemory": 50000,
"basePersistDirectory": "\/opt\/druid-data\/realtime\/basePersist",
"intermediatePersistPeriod": "PT10m",
"windowPeriod": "PT15m",
"rejectionPolicy": {
"type": "serverTime"
}
}
},
{
"dataSchema": {
"dataSource": "first",
"parser": {
"type": "string",
"parseSpec": {
"format": "json",
"timestampSpec": {
"column": "ts_start"
},
"dimensionsSpec": {
"dimensions": [
"etid",
"category",
"device_id",
"device_name",
"severity",
"x_2",
"x_3",
"x_4",
"x_5",
"vlan",
"s_x",
"d_x",
"s_i",
"d_i",
"d_p",
"id"
],
"dimensionExclusions": [],
"spatialDimensions": []
}
}
},
"metricsSpec": [
{ "type": "doubleSum", "name": "val_num", "fieldName": "val_num" },
{ "type": "doubleMin", "name": "val_num_min", "fieldName": "val_num" },
{ "type": "doubleMax", "name": "val_num_max", "fieldName": "val_num" },
{ "type": "doubleSum", "name": "size", "fieldName": "size" },
{ "type": "doubleMin", "name": "size_min", "fieldName": "size" },
{ "type": "doubleMax", "name": "size_max", "fieldName": "size" },
{ "type": "count", "name": "first_count" }
],
"granularitySpec": {
"type": "uniform",
"segmentGranularity": "HOUR",
"queryGranularity": "minute"
}
},
"ioConfig": {
"type": "realtime",
"firehose": {
"type": "kafka-0.8",
"consumerProps": {
"zookeeper.connect": "localhost:2181",
"zookeeper.connectiontimeout.ms": "15000",
"zookeeper.sessiontimeout.ms": "15000",
"zookeeper.synctime.ms": "5000",
"group.id": "first",
"fetch.size": "1048586",
"autooffset.reset": "largest",
"autocommit.enable": "false"
},
"feed": "first"
},
"plumber": {
"type": "realtime"
}
},
"tuningConfig": {
"type": "realtime",
"maxRowsInMemory": 50000,
"basePersistDirectory": "\/opt\/druid-data\/realtime\/basePersist",
"intermediatePersistPeriod": "PT10m",
"windowPeriod": "PT15m",
"rejectionPolicy": {
"type": "serverTime"
}
}
}
]
Based on your schema definitions there are a few observations I'll make.
When doing a join you usually have to list out columns explicitly (not use a *) otherwise you get collisions from duplicate columns. In your join, for example, you have a device_id in both "first" and "second-schema", not to mention all the other columns that are the same across both.
When using a literal delimiter I don't mix them up. I either use them or I don't.
So I think your query will work better in the form of something more like this
SELECT
"first"."etid",
"first"."category",
"first"."device_id",
"first"."device_name",
"first"."severity",
"first"."x_2",
"first"."x_3",
"first"."x_4",
"first"."x_5",
"first"."vlan",
"first"."s_x",
"first"."d_x",
"first"."s_i",
"first"."d_i",
"first"."d_p",
"first"."id",
"second-schema"."etid" as "ss_etid",
"second-schema"."device_id" as "ss_device_id",
"second-schema"."device_name" as "ss_device_name",
"second-schema"."x_1" as "ss_x_1",
"second-schema"."x_2" as "ss_x_2",
"second-schema"."x_3" as "ss_x_3",
"second-schema"."vlan" as "ss_vlan",
"second-schema"."s_x" as "ss_s_x",
"second-schema"."d_x" as "ss_d_x",
"second-schema"."d_p" as "ss_d_p",
"second-schema"."msg_type"
FROM "first"
INNER JOIN "second-schema" ON "first"."device_id" = "second-schema"."device_id";
Obviously feel free to name columns as you see fit, or include exclude columns as needed. Select * will only work when all columns across both tables are unique.