This has been bugging me for quite some time. I have a pointer. I declare an array of type int.
int* data;
data = new int[5];
I believe this creates an array of int with size 5. So I'll be able to store values from data[0] to data[4].
Now I create an array the same way, but without size.
int* data;
data = new int;
I am still able to store values in data[2] or data[3]. But I created an array of size 1. How is this possible?
I understand that data is a pointer pointing to the first element of the array. Though I haven't allocated memory for the next elements, I still able to access them. How?
Thanks.
Normally, there is no need to allocate an array "manually" with new
. It is just much more convenient and also much safer to use std::vector<int>
instead. And leave the correct implementation of dynamic memory management to the authors of the standard library.
std::vector<int>
optionally provides element access with bounds checking, via the at()
method.
Example:
#include <vector>
int main() {
// create resizable array of integers and resize as desired
std::vector<int> data;
data.resize(5);
// element access without bounds checking
data[3] = 10;
// optionally: element access with bounds checking
// attempts to access out-of-range elements trigger runtime exception
data.at(10) = 0;
}
The default mode in C++ is usually to allow to shoot yourself in the foot with undefined behavior as you have seen in your case.
For reference:
Also, in the second case you don't allocate an array at all, but a single object. Note that you must use the matching delete
operator too.
int main() {
// allocate and deallocate an array
int *arr = new int[5];
delete[] arr;
// allocate and deallocate a single object
int *p = new int;
delete p;
}
For reference: