I am writing a kind of container class, for which I would like to offer an apply
method which evaluates a function on the content of the container.
template<typename T>
struct Foo
{
T val;
/** apply a free function */
template<typename U> Foo<U> apply(U(*fun)(const T&))
{
return Foo<U>(fun(val));
}
/** apply a member function */
template<typename U> Foo<U> apply(U (T::*fun)() const)
{
return Foo<U>((val.*fun)());
}
};
struct Bar{};
template class Foo<Bar>; // this compiles
//template class Foo<int>; // this produces an error
The last line yields error: creating pointer to member function of non-class type ‘const int’
. Even though I only instantiated Foo
and not used apply
at all. So my question is: How can I effectively remove the second overload whenever T
is a non-class type?
Note: I also tried having only one overload taking a std::function<U(const T&)>
. This kinda works, because both function-pointers and member-function-pointers can be converted to std::function
, but this approach effectively disables template deduction for U
which makes user-code less readable.
Using std::invoke
instead helps, it is much easier to implement and read
template<typename T>
struct Foo
{
T val;
template<typename U> auto apply(U&& fun)
{
return Foo<std::invoke_result_t<U, T>>{std::invoke(std::forward<U>(fun), val)};
}
};
struct Bar{};
template class Foo<Bar>;
template class Foo<int>;
However, this won't compile if the functions are overloaded
int f();
double f(const Bar&);
Foo<Bar>{}.apply(f); // Doesn't compile
The way around that is to use functors instead
Foo<Bar>{}.apply([](auto&& bar) -> decltype(auto) { return f(decltype(bar)(bar)); });
Which also makes it more consistent with member function calls
Foo<Bar>{}.apply([](auto&& bar) -> decltype(auto) { return decltype(bar)(bar).f(); });