I have a __m256i
vector containing 16x16-bit elements.I want to apply a three adjacent horizontal addition on it. In scalar mode I use the following code:
unsigned short int temp[16];
__m256i sum_v;//has some values. 16 elements of 16-bit vector. | 0 | x15 | x14 | x13 | ... | x3 | x2 | x1 |
_mm256_store_si256((__m256i *)&temp[0], sum_v);
output1 = (temp[0] + temp[1] + temp[2]);
output2 = (temp[3] + temp[4] + temp[5]);
output3 = (temp[6] + temp[7] + temp[8]);
output4 = (temp[9] + temp[10] + temp[11]);
output5 = (temp[12] + temp[13] + temp[14]);
// Dont want the 15th element
Because this part is placed in the bottleneck section of my program, I decided to vectorize is using AVX2. Dreamy I can add them like the following pseudo:
sum_v //| 0 | x15 | x14 | x13 |...| x10 |...| x7 |...| x4 |...| x1 |
sum_v1 = sum_v >> 1*16 //| 0 | 0 | x15 | x14 |...| x11 |...| x8 |...| x5 |...| x2 |
sum_v2 = sumv >> 2*16 //| 0 | 0 | 0 | x15 |...| x12 |...| x9 |...| x6 |...| x3 |
result_vec = add_epi16 (sum_v,sum_v1,sum_v2)
//then I should extact the result_vec to outputs
Adding them vertically will provide the answer.
But unfortunately, AVX2 has not a shift operation for 256 bits while the 256-bit register is viewed as two 128-bit lanes. I should use permutation for this case. But I could not find an appropriate permut
, shuffle
, etc. to do this. Is there any suggestion for this implementation that should be as fast as possible.
Using gcc
, linux mint
, intrinsics
, skylake
.
You can do this with two adds and only 2 "shuffles": _mm256_bsrli_epi128 shifts in zeros at positions that are not of interest to the answer. For _mm256_permutevar8x32_epi32 we choose a permutation that duplicates the upper 32 bits, but these bits are also not relevant for the answer.
#include <stdio.h>
#include <x86intrin.h>
/* gcc -O3 -Wall -m64 -march=haswell hor_sum3x3.c */
int print_vec_short(__m256i x);
int print_12_9_6_3_0_short(__m256i x);
int main() {
short x[16];
for(int i=0; i<16; i++) x[i] = i+1; x[15] = 0;
__m256i t0 = _mm256_loadu_si256((__m256i*)x);
__m256i t1 = _mm256_bsrli_epi128(t0,2); /* Shift 128 bit lanes in t0 right by 2 bytes while shifting in zeros. Fortunately the zeros are in the positions that we don't need */
__m256i t2 = _mm256_permutevar8x32_epi32(t0,_mm256_set_epi32(7,7,6,5,4,3,2,1)); /* Shift right by 4 bytes */
__m256i sum = _mm256_add_epi16(_mm256_add_epi16(t0,t1),t2);
printf("t0 = ");print_vec_short(t0);
printf("t1 = ");print_vec_short(t1);
printf("t2 = ");print_vec_short(t2);
printf("sum = ");print_vec_short(sum);
printf("\nvector elements of interest: columns 12, 9, 6, 3, 0:\n");
printf("t0[12, 9, 6, 3, 0] = ");print_12_9_6_3_0_short(t0);
printf("t1[12, 9, 6, 3, 0] = ");print_12_9_6_3_0_short(t1);
printf("t2[12, 9, 6, 3, 0] = ");print_12_9_6_3_0_short(t2);
printf("sum[12, 9, 6, 3, 0] = ");print_12_9_6_3_0_short(sum);
return 0;
}
int print_vec_short(__m256i x){
short int v[16];
_mm256_storeu_si256((__m256i *)v,x);
printf("%4hi %4hi %4hi %4hi | %4hi %4hi %4hi %4hi | %4hi %4hi %4hi %4hi | %4hi %4hi %4hi %4hi \n",
v[15],v[14],v[13],v[12],v[11],v[10],v[9],v[8],v[7],v[6],v[5],v[4],v[3],v[2],v[1],v[0]);
return 0;
}
int print_12_9_6_3_0_short(__m256i x){
short int v[16];
_mm256_storeu_si256((__m256i *)v,x);
printf("%4hi %4hi %4hi %4hi %4hi \n",v[12],v[9],v[6],v[3],v[0]);
return 0;
}
The output is:
$ ./a.out
t0 = 0 15 14 13 | 12 11 10 9 | 8 7 6 5 | 4 3 2 1
t1 = 0 0 15 14 | 13 12 11 10 | 0 8 7 6 | 5 4 3 2
t2 = 0 15 0 15 | 14 13 12 11 | 10 9 8 7 | 6 5 4 3
sum = 0 30 29 42 | 39 36 33 30 | 18 24 21 18 | 15 12 9 6
vector elements of interest: columns 12, 9, 6, 3, 0:
t0[12, 9, 6, 3, 0] = 13 10 7 4 1
t1[12, 9, 6, 3, 0] = 14 11 8 5 2
t2[12, 9, 6, 3, 0] = 15 12 9 6 3
sum[12, 9, 6, 3, 0] = 42 33 24 15 6