Let's say that I have an adt representing some kind of tree structure:
data Tree = ANode (Maybe Tree) (Maybe Tree) AValType
| BNode (Maybe Tree) (Maybe Tree) BValType
| CNode (Maybe Tree) (Maybe Tree) CValType
As far as I know there's no way of pattern matching against type constructors (or the matching functions itself wouldn't have a type?) but I'd still like to use the compile-time type system to eliminate the possibility of returning or parsing the wrong 'type' of Tree node. For example, it might be that CNode's can only be parents to ANodes. I might have
parseANode :: Parser (Maybe Tree)
as a Parsec parsing function that get's used as part of my CNode parser:
parseCNode :: Parser (Maybe Tree)
parseCNode = try (
string "<CNode>" >>
parseANode >>= \maybeanodel ->
parseANode >>= \maybeanoder ->
parseCValType >>= \cval ->
string "</CNode>"
return (Just (CNode maybeanodel maybeanoder cval))
) <|> return Nothing
According to the type system, parseANode could end up returning a Maybe CNode, a Maybe BNode, or a Maybe ANode, but I really want to make sure that it only returns a Maybe ANode. Note that this isn't a schema-value of data or runtime-check that I want to do - I'm actually just trying to check the validity of the parser that I've written for a particular tree schema. IOW, I'm not trying to check parsed data for schema-correctness, what I'm really trying to do is check my parser for schema correctness - I'd just like to make sure that I don't botch-up parseANode someday to return something other than an ANode value.
I was hoping that maybe if I matched against the value constructor in the bind variable, that the type-inferencing would figure out what I meant:
parseCNode :: Parser (Maybe Tree)
parseCNode = try (
string "<CNode>" >>
parseANode >>= \(Maybe (ANode left right avall)) ->
parseANode >>= \(Maybe (ANode left right avalr)) ->
parseCValType >>= \cval ->
string "</CNode>"
return (Just (CNode (Maybe (ANode left right avall)) (Maybe (ANode left right avalr)) cval))
) <|> return Nothing
But this has a lot of problems, not the least of which that parseANode is no longer free to return Nothing. And it doesn't work anyways - it looks like that bind variable is treated as a pattern match and the runtime complains about non-exhaustive pattern matching when parseANode either returns Nothing or Maybe BNode or something.
I could do something along these lines:
data ANode = ANode (Maybe BNode) (Maybe BNode) AValType
data BNode = BNode (Maybe CNode) (Maybe CNode) BValType
data CNode = CNode (Maybe ANode) (Maybe ANode) CValType
but that kind of sucks because it assumes that the constraint is applied to all nodes - I might not be interested in doing that - indeed it might just be CNodes that can only be parenting ANodes. So I guess I could do this:
data AnyNode = AnyANode ANode | AnyBNode BNode | AnyCNode CNode
data ANode = ANode (Maybe AnyNode) (Maybe AnyNode) AValType
data BNode = BNode (Maybe AnyNode) (Maybe AnyNode) BValType
data CNode = CNode (Maybe ANode) (Maybe ANode) CValType
but then this makes it much harder to pattern-match against *Node's - in fact it's impossible because they're just completely distinct types. I could make a typeclass wherever I wanted to pattern-match I guess
class Node t where
matchingFunc :: t -> Bool
instance Node ANode where
matchingFunc (ANode left right val) = testA val
instance Node BNode where
matchingFunc (BNode left right val) = val == refBVal
instance Node CNode where
matchingFunc (CNode left right val) = doSomethingWithACValAndReturnABool val
At any rate, this just seems kind of messy. Can anyone think of a more succinct way of doing this?
I don't understand your objection to your final solution. You can still pattern match against AnyNode
s, like this:
f (AnyANode (ANode x y z)) = ...
It's a little more verbose, but I think it has the engineering properties you want.