I wonder if there is a workaround is such situation:
class A
{
class
{
public:
void setValue(int val) {i=val;}
private:
int i;
} B = initB(10);
std::function<decltype(B)(int)> initB = [this](int value)
{decltype(B) temp;
temp.setValue(value);
return temp;};
}
//...
A a; //crash
//...
I suppose it is caused by order of initialization. Variable B
is initilized by calling an uninitilized std::function
instance, hence the crash. By my logic, the workaround would be to initialize std::function
first, then initialize member B
. But then, such code is not valid:
class A
{
//error: 'B' was not declared in this scope
std::function<decltype(B)(int)> initB = [this](int value)
{decltype(B) temp;
temp.setValue(value);
return temp;};
class
{
public:
void setValue(int val) {i=val;}
private:
int i;
} B = initB(10);
}
I tried to make to make the std::function
static
, and such code works, but requires non-constexpr/const
member, because std::function has non-trivial destructor
- which is bad, because that requires source file, which requires creating such file, which requires some efford and destruction of my beautiful header-only class hierarchy! (I mean, I could be lazy and define this variable in the header, but then the multiple definition problem occurs). I know it might be a bad design (i'm just testing things out), but do you have any ideas how the problem can be solved without involving source files?
Although your example is contrived, there are times when I've needed (or its more convenient) to initialize complex objects in a similar way.
But, why use std::function<>? Why not just use a function?
class A
{
class
{
public:
void setValue(int val) { i = val; }
private:
int i;
} B = initB(10);
static decltype(B) initB(int value)
{
decltype(B) temp;
temp.setValue(value);
return temp;
}
};
Although, I wouldn't normally use decltype(B); I would just give the class a name.