I am trying to write some position/orientation methods for my small & simple 3d-space calculation library. But I'm stuck on the following problem.
I store 3d line as start
and end
points. However it should be possible to store it as start
point and line's length
+ orientation
as well (it's just a good example to test if orientation calculations works).
By orientation
I mean rotation from the initial "0" orientation (which places the end
at start + [0,legth,0]
). So I first rotate the [0,length,0]
by orientation and then add start
to it to get end
point.
The problem is, my orientation calculations fails somewhere. After calculating the orientation I get different ending point.
I use left-handed coordinate system with Y-axis pointing up, but I don't think it's important here.
Here's the code (I've tried to name the methods in the way you can check if the steps are ok; here's the full source code if you want to compile it yourself):
Point3D start = { 5.0f, 4.0f, 7.0f };
Point3D end = { 15.0f, 6.0f, 14.0f };
Point3D direction = (end - start);
std::wcout << L"Direction: "; direction.output();
float angle = Point3D(0.0f, 1.0f, 0.0f).getAngleToAnotherVectorInRadians(direction);
Point3D axis = direction.getCrossProduct(Point3D(0.0f, 1.0f, 0.0f)).getNormalized();
Quaternion o = Quaternion(AxisAngle(axis, angle));
std::wcout << L"\nAxisAngle: "; AxisAngle(axis, angle).output();
std::wcout << L"\nOrientation: "; o.output();
//test - end2 should be equal to end
Point3D offset(0.0f, (end - start).getLengthAsVector(), 0.0f);
offset = o.rotatePoint(offset);
std::wcout << L"\nOffset: "; offset.output();
Point3D end2 = start + offset;
std::wcout << L"\nEnd2: "; end2.output();
The code produces such output (without a comments, of course):
Direction: {10, 2, 7} //looks ok
AxisAngle: {{-0.573462, 0, 0.819232}, 1.40839}
Orientation: {-0.371272, 0, 0.530388, 0.762132}
Offset: {-10, 2, -7} //Almost! It should be {10, 2, 7}
End2: {-5, 6, -9.53674e-07} //Wrong! It should be { 15, 6, 14 }
In case that all steps are ok but there are some mistakes in methods' implementations I post here the important code for classes (so you can reproduce the problem): Point3D, AxisAngle, Quaternion
.
I highly believe that problem(s) lay(s) in my main steps or in AxisAngle
calculations. I think that AxisAngle
to Quaternion
transformation is ok (but I pass the wrong AxisAngle
to Quaternion
constructor).
The Point3D
:
struct Point3D {
protected:
float x, y, z;
public:
Point3D() : x(0.0f), y(0.0f), z(0.0f) {}
Point3D(float x, float y, float z) : x(x), y(y), z(z) {}
void output() { std::wcout << L"{" << x << L", " << y << L", " << z << L"}"; }
Point3D operator-(const Point3D &point) const {
Point3D temp;
temp.setX(getX() - point.getX());
temp.setY(getY() - point.getY());
temp.setZ(getZ() - point.getZ());
return temp;
}
Point3D operator+ (const Point3D &value) const {
Point3D temp;
temp.setX(getX() + value.getX());
temp.setY(getY() + value.getY());
temp.setZ(getZ() + value.getZ());
return temp;
}
inline float getX() const { return x; } inline float getY() const { return y; } inline float getZ() const { return z; }
inline void setX(float x) { this->x = x; } inline void setY(float y) { this->y = y; } inline void setZ(float z) { this->z = z; }
inline float getLengthAsVector() const {
return sqrt(x*x + y*y + z*z);
}
inline Point3D getCrossProduct(const Point3D &anotherVector) const {
//based on: http://www.sciencehq.com/physics/vector-product-multiplying-vectors.html
return Point3D(
y * anotherVector.z - anotherVector.y * z,
z * anotherVector.x - anotherVector.z * x,
x * anotherVector.y - anotherVector.x * y
);
}
inline float getDotProduct(const Point3D &anotherVector) const {
//based on: https://www.ltcconline.net/greenl/courses/107/Vectors/DOTCROS.HTM
return x * anotherVector.x + y * anotherVector.y + z * anotherVector.z;
}
inline float getAngleToAnotherVectorInRadians(const Point3D &anotherVector) const {
//based on: http://math.stackexchange.com/questions/974178/how-to-calculate-the-angle-between-2-vectors-in-3d-space-given-a-preset-function
return acos(getDotProduct(anotherVector) / (getLengthAsVector() * anotherVector.getLengthAsVector()));
}
Point3D getNormalized() const {
float length = std::abs(sqrt(x*x + y*y + z*z));
Point3D result(x / length, y / length, z / length);
return result;
}
};
The AxisAngle
:
class AxisAngle {
protected:
Point3D axis;
float angleInRadians;
public:
AxisAngle(const AxisAngle &other) { axis = other.axis; angleInRadians = other.angleInRadians; }
AxisAngle::AxisAngle(float x, float y, float z, float angleInRadians) {
this->axis = Point3D(x, y, z);
this->angleInRadians = angleInRadians;
}
AxisAngle::AxisAngle(const Point3D &axis, float angleInRadians) {
this->axis = axis;
this->angleInRadians = angleInRadians;
}
Point3D getAxis() const { return axis; }
float getAngleInRadians() const { return angleInRadians; }
void output() { std::wcout << L"{"; axis.output(); std::wcout << L", " << angleInRadians << L"}"; }
};
And last but not least, Quaternion
:
class Quaternion {
protected:
float x; float y; float z; float w;
public:
Quaternion() { x = 0.0f; y = 0.0f; z = 0.0f; w = 1.0f; }
Quaternion(const Quaternion &other) { x = other.x; y = other.y; z = other.z; w = other.w; }
Quaternion(float x, float y, float z, float w) { this->x = x; this->y = y; this->z = z; this->w = w; }
Quaternion(const AxisAngle &axisAngle) {
Point3D axis = axisAngle.getAxis();
float angleInRadians = axisAngle.getAngleInRadians();
x = sin(angleInRadians / 2) * axis.getX();
y = sin(angleInRadians / 2) * axis.getY();
z = sin(angleInRadians / 2) * axis.getZ();
w = cos(angleInRadians / 2);
normalizeIt();
}
float getLength() const {
return sqrt(x*x + y*y + z*z + w*w);
}
void normalizeIt() {
float length = getLength();
x = x / length;
y = y / length;
z = z / length;
w = w / length;
}
Quaternion getConjugated() const {
return Quaternion(-x, -y, -z, w);
}
Quaternion multiply(Quaternion by) {
//"R" for result
float wR = w * by.getW() - x * by.getX() - y * by.getY() - z * by.getZ();
float xR = x * by.getW() + w * by.getX() + y * by.getZ() - z * by.getY();
float yR = y * by.getW() + w * by.getY() + z * by.getX() - x * by.getZ();
float zR = z * by.getW() + w * by.getZ() + x * by.getY() - y * by.getX();
return Quaternion(xR, yR, zR, wR);
}
//rotate Point3D p around [0,0,0] with this Quaternion
Point3D rotatePoint(Point3D p) const {
Quaternion temp = multiply(p).multiply(getConjugated());
return Point3D(temp.getX(), temp.getY(), temp.getZ());
//G: P' = Q(P-G)Q' + G <- to rotate P around G with Quaternion
}
Quaternion multiply(Point3D r) const {
float wR = -x * r.getX() - y * r.getY() - z * r.getZ();
float xR = w * r.getX() + y * r.getZ() - z * r.getY();
float yR = w * r.getY() + z * r.getX() - x * r.getZ();
float zR = w * r.getZ() + x * r.getY() - y * r.getX();
return Quaternion(xR, yR, zR, wR);
}
inline float getX() const { return x; } inline void setX(float x) { this->x = x; }
inline float getY() const { return y; } inline void setY(float y) { this->y = y; }
inline float getZ() const { return z; } inline void setZ(float z) { this->z = z; }
inline float getW() const { return w; } inline void setW(float w) { this->w = w; }
void output() { std::wcout << L"{" << x << L", " << y << L", " << z << L", " << w << L"}"; }
};
In case somebody would ask: I do want to use quaternions. They may not look 100% needed here, but storing 3d object's orientation as quaternion has many benefits in more complex computations (and most game engines / 3d software use it as well "under the mask").
Your axis has the wrong orientation. It should be:
Point3D axis = Point3D(0.0f, 1.0f, 0.0f).getCrossProduct(direction).getNormalized();
Use the two left-hand rules to figure out the correct order.