I'm currently trying to follow the current A* pseudocode (from Wikipedia) to write my A* algorithm:
function A*(start,goal)
closedset := the empty set // The set of nodes already evaluated.
openset := {start} // The set of tentative nodes to be evaluated, initially containing the start node
came_from := the empty map // The map of navigated nodes.
g_score[start] := 0 // Cost from start along best known path.
// Estimated total cost from start to goal through y.
f_score[start] := g_score[start] + heuristic_cost_estimate(start, goal)
while openset is not empty
current := the node in openset having the lowest f_score[] value
if current = goal
return reconstruct_path(came_from, goal)
remove current from openset
add current to closedset
for each neighbor in neighbor_nodes(current)
if neighbor in closedset
continue
tentative_g_score := g_score[current] + dist_between(current,neighbor)
if neighbor not in openset or tentative_g_score < g_score[neighbor]
came_from[neighbor] := current
g_score[neighbor] := tentative_g_score
f_score[neighbor] := g_score[neighbor] + heuristic_cost_estimate(neighbor, goal)
if neighbor not in openset
add neighbor to openset
return failure
function reconstruct_path(came_from,current)
total_path := [current]
while current in came_from:
current := came_from[current]
total_path.append(current)
return total_path
I'm using a PriorityQueue for the openset and closedset each, however I'm unsure what to use for the "came_from" map of navigated nodes. Does it matter? Should I use a Priority Queue as well? Or will a simple List do?
Thanks!
I ended up using the C# Dictionary Data Structure in the end, and it's worked well, if anyone is interested.