Lets say we have some numbers from 0 to n
, we want to scramble those in size s
and want to see every possible combination.
So the number of permutations happens to be equal to s! * n!/(s!*(n-s)!)
.
Example with n = 3
and s = 3
:
0 1 2 | 0 1 3 | 0 2 1 | 0 2 3 | 0 3 1 | 0 3 2 | 1 0 2 | 1 0 3 | 1 3 2
1 2 3 | 1 2 0 | 1 3 0 | 2 0 1 | 2 1 0 | 2 0 3 | 2 3 0 | 2 3 1 | 2 1 3
3 0 1 | 3 1 0 | 3 0 2 | 3 2 0 | 3 1 2 | 3 2 1
Is there a smooth way using boost/stl to achieve this?
#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
void dfs(int depth, int s, int i, std::vector<int>& c, const std::vector<int>& v)
{
if (depth == s)
{
// base case: all chosen elements are in v, so we print
// all permutations of v
do
{
std::copy(c.begin(), c.end(), std::ostream_iterator<int>(std::cout, " "));
std::cout << "| ";
}
while (std::next_permutation(c.begin(), c.end()));
}
else
{
// regular case: loop and recurse, which effectively creates an
// n-dimensional for loop.
// This is the classic approach to finding the
// Cartesian product of N vectors or all combinations of elements.
for (int j = i + 1; j < (int)v.size(); ++j)
{
c.push_back(v[j]);
dfs(depth + 1, s, j, c, v);
c.pop_back();
}
}
}
int main()
{
std::vector<int> v{ 0, 1, 2, 3 };
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
std::vector<int> c;
const int length = 3;
dfs(0, length, -1, c, v);
}
Output:
0 1 2 | 0 2 1 | 1 0 2 | 1 2 0 | 2 0 1 | 2 1 0 | 0 1 3 | 0 3 1 | 1 0 3 |
1 3 0 | 3 0 1 | 3 1 0 | 0 2 3 | 0 3 2 | 2 0 3 | 2 3 0 | 3 0 2 | 3 2 0 |
1 2 3 | 1 3 2 | 2 1 3 | 2 3 1 | 3 1 2 | 3 2 1