I'm looking to understand quaternions for three.js, but for all the tutorials, I haven't been able to translate them into the application I need. This is the problem:
Given a sphere centered at (0,0,0), I want to angle an object on the sphere's surface, that acts as the focal point for the camera. This point is to be moved and rotated on the surface with keyboard input. Setting the focal point into a chosen orbit is easy of course, but maintaining the right rotation perpendicular to the surface escapes me. I know quaternions are neccessary for smooth movement and arbitrary axis rotation, but I don't know where to start.
The second part then is rotating the camera offset with the focal point. The snippet I found for this does not have the desired effect anymore, as the cameraOffset does not inherit the rotation:
var cameraOffset = relativeCameraOffset.clone().applyMatrix4( focalPoint.matrixWorld );
camera.position.copy( focalPoint.position.clone().add(cameraOffset) );
camera.lookAt( focalPoint.position );
Update 1: Tried it with fixed camera on the pole and rotating the planet. But unless I'm missing something important, this fails as well, due to the directions getting skewed completely when going towards the equator. (Left becomes forward). Code in update is:
acceleration.set(0,0,0);
if (keyboard.pressed("w")) acceleration.x = 1 * accelerationSpeed;
if (keyboard.pressed("s")) acceleration.x = -1 * accelerationSpeed;
if (keyboard.pressed("a")) acceleration.z = 1 * accelerationSpeed;
if (keyboard.pressed("d")) acceleration.z = -1 * accelerationSpeed;
if (keyboard.pressed("q")) acceleration.y = 1 * accelerationSpeed;
if (keyboard.pressed("e")) acceleration.y = -1 * accelerationSpeed;
velocity.add(acceleration);
velocity.multiplyScalar(dropOff);
velocity.max(minV);
velocity.min(maxV);
planet.mesh.rotation.x += velocity.x;
planet.mesh.rotation.y += velocity.y;
planet.mesh.rotation.z += velocity.z;
So I'm still open for suggestions.
Finally found the solution from a mixture of matrices and quaternions:
//Setup
var ux = new THREE.Vector3(1,0,0);
var uy = new THREE.Vector3(0,1,0);
var uz = new THREE.Vector3(0,0,1);
var direction = ux.clone();
var m4 = new THREE.Matrix4();
var dq = new THREE.Quaternion(); //direction quad base
var dqq; //final direction quad
var dq2 = new THREE.Quaternion();
dq2.setFromAxisAngle(uz,Math.PI/2); //direction perpendicular rot
//Update
if (velocity.length() < 0.1) return;
if (velocity.x) { focalPoint.translateY( velocity.x ); }
if (velocity.y) { focalPoint.translateX( velocity.y ); }
//create new direction from focalPoint quat, but perpendicular
dqq = dq.clone().multiply(focalPoint.quaternion).multiply(dq2);
velocity.multiplyScalar(dropOff);
//forward direction vector
direction = ux.clone().applyQuaternion(dqq).normalize();
//use Matrix4.lookAt to align focalPoint with the direction
m4.lookAt(focalPoint.position, planet.mesh.position, direction);
focalPoint.quaternion.setFromRotationMatrix(m4);
var cameraOffset = relativeCameraOffset.clone();
cameraOffset.z = cameraDistance;
cameraOffset.applyQuaternion(focalPoint.quaternion);
camera.position = focalPoint.position.clone().add(cameraOffset) ;
//use direction for camera rotation as well
camera.up = direction;
camera.lookAt( focalPoint.position );
This is the hard core of it. It pans (and with some extension rotates) around the planet without the poles being an issue.