.h file:
#define VECTOR_SIZE 1024
.cpp file:
int main ()
{
unsigned int* A;
A = new unsigned int [VECTOR_SIZE];
CopyToDevice (A);
}
.cu file:
void CopyToDevice (unsigned int *A)
{
ulong4 *UA
unsigned int VectorSizeUlong4 = VECTOR_SIZE / 4;
unsigned int VectorSizeBytesUlong4 = VectorSizeUlong4 * sizeof(ulong4);
cudaMalloc( (void**)&UA, VectorSizeBytesUlong4 );
// how to use cudaMemcpy to copy data from A to UA?
// I tried to do the following but it gave access violation error:
for (int i=0; i<VectorSizeUlong4; ++i)
{
UA[i].x = A[i*4 + 0];
UA[i].y = A[i*4 + 1];
UA[i].z = A[i*4 + 2];
UA[i].w = A[i*4 + 3];
}
// I also tried to copy *A to device and then work on it instead going back to CPU to access *A every time but this did not work again
}
The CUDA ulong4
is a 16 byte aligned structure defined as
struct __builtin_align__(16) ulong4
{
unsigned long int x, y, z, w;
};
this means that the stream of four consecutive 32 bit unsigned source integers you want to use to populate a stream of ulong4
are the same size. The simplest solution is contained right in the text on the image you posted - just cast (either implicitly or explicitly) the unsigned int
pointer to a ulong4
pointer, use cudaMemcpy
directly on the host and device memory, and pass the resulting device pointer to whatever kernel function you have that requires a ulong4
input. Your device transfer function could look something like:
ulong4* CopyToDevice (unsigned int* A)
{
ulong4 *UA, *UA_h;
size_t VectorSizeUlong4 = VECTOR_SIZE / 4;
size_t VectorSizeBytesUlong4 = VectorSizeUlong4 * sizeof(ulong4);
cudaMalloc( (void**)&UA, VectorSizeBytesUlong4);
UA_h = reinterpret_cast<ulong4*>(A); // not necessary but increases transparency
cudaMemcpy(UA, UA_h, VectorSizeBytesUlong4);
return UA;
}
[Usual disclaimer: written in browser, not tested or compiled, use at own risk]