Search code examples
c++visual-c++vectorramdeque

Why is deque using so much more RAM than vector in C++?


I have a problem I am working on where I need to use some sort of 2 dimensional array. The array is fixed width (four columns), but I need to create extra rows on the fly.

To do this, I have been using vectors of vectors, and I have been using some nested loops that contain this:

array.push_back(vector<float>(4));
array[n][0] = a;
array[n][1] = b;
array[n][2] = c;
array[n][3] = d;
n++

to add the rows and their contents. The trouble is that I appear to be running out of memory with the number of elements I was trying to create, so I reduced the number that I was using. But then I started reading about deque, and thought it would allow me to use more memory because it doesn't have to be contiguous. I changed all mentions of "vector" to "deque", in this loop, as well as all declarations. But then it appeared that I ran out of memory again, this time with even with the reduced number of rows.

I looked at how much memory my code is using, and when I am using deque, the memory rises steadily to above 2GB, and the program closes soon after, even when using the smaller number of rows. I'm not sure exactly where in this loop it is when it runs out of memory.

When I use vectors, the memory usage (for the same number of rows) is still under 1GB, even when the loop exits. It then goes on to a similar loop where more rows are added, still only reaching about 1.4GB.

So my question is. Is this normal for deque to use more than twice the memory of vector, or am I making an erroneous assumption in thinking I can just replace the word "vector" with "deque" in the declarations/initializations and the above code?

Thanks in advance.

I'm using: MS Visual C++ 2010 (32-bit) Windows 7 (64-bit)


Solution

  • It all depends on the internal implementation of deque (I won't speak about vector since it is relatively straightforward).

    Fact is, deque has completely different guarantees than vector (the most important one being that it supports O(1) insertion at both ends while vector only supports O(1) insertion at the back). This in turn means the internal structures managed by deque have to be more complex than vector.

    To allow that, a typical deque implementation will split its memory in several non-contiguous blocks. But each individual memory block has a fixed overhead to allow the memory management to work (eg. whatever the size of the block, the system may need another 16 or 32 bytes or whatever in addition, just for bookkeeping). Since, contrary to a vector, a deque requires many small, independent blocks, the overhead stacks up which can explain the difference you see. Also note that those individual memory blocks need to be managed (maybe in separate structures?), which probably means some (or a lot of) additional overhead too.

    As for a way to solve your problem, you could try what @BasileStarynkevitch suggested in the comments, this will indeed reduce your memory usage but it will get you only so far because at some point you'll still run out of memory. And what if you try to run your program on a machine that only has 256MB RAM? Any other solution which goal is to reduce your memory footprint while still trying to keep all your data in memory will suffer from the same problems.

    A proper solution when handling large datasets like yours would be to adapt your algorithms and data structures in order to be able to handle small partitions at a time of your whole dataset, and load/save those partitions as needed in order to make room for the other partitions. Unfortunately since it probably means disk access, it also means a big drop in performance but hey, you can't eat the cake and have it too.