In the following program you can see that each value slightly less than .5
is rounded down, except for 0.5
.
for (int i = 10; i >= 0; i--) {
long l = Double.doubleToLongBits(i + 0.5);
double x;
do {
x = Double.longBitsToDouble(l);
System.out.println(x + " rounded is " + Math.round(x));
l--;
} while (Math.round(x) > i);
}
prints
10.5 rounded is 11
10.499999999999998 rounded is 10
9.5 rounded is 10
9.499999999999998 rounded is 9
8.5 rounded is 9
8.499999999999998 rounded is 8
7.5 rounded is 8
7.499999999999999 rounded is 7
6.5 rounded is 7
6.499999999999999 rounded is 6
5.5 rounded is 6
5.499999999999999 rounded is 5
4.5 rounded is 5
4.499999999999999 rounded is 4
3.5 rounded is 4
3.4999999999999996 rounded is 3
2.5 rounded is 3
2.4999999999999996 rounded is 2
1.5 rounded is 2
1.4999999999999998 rounded is 1
0.5 rounded is 1
0.49999999999999994 rounded is 1
0.4999999999999999 rounded is 0
I am using Java 6 update 31.
Summary
In Java 6 (and presumably earlier), round(x)
is implemented as floor(x+0.5)
.1 This is a specification bug, for precisely this one pathological case.2 Java 7 no longer mandates this broken implementation.3
The problem
0.5+0.49999999999999994 is exactly 1 in double precision:
static void print(double d) {
System.out.printf("%016x\n", Double.doubleToLongBits(d));
}
public static void main(String args[]) {
double a = 0.5;
double b = 0.49999999999999994;
print(a); // 3fe0000000000000
print(b); // 3fdfffffffffffff
print(a+b); // 3ff0000000000000
print(1.0); // 3ff0000000000000
}
This is because 0.49999999999999994 has a smaller exponent than 0.5, so when they're added, its mantissa is shifted, and the ULP gets bigger.
The solution
Since Java 7, OpenJDK (for example) implements it thus:4
public static long round(double a) {
if (a != 0x1.fffffffffffffp-2) // greatest double value less than 0.5
return (long)floor(a + 0.5d);
else
return 0;
}