Search code examples
linuxgccglibc

Multiple glibc libraries on a single host


My linux (SLES-8) server currently has glibc-2.2.5-235, but I have a program which won't work on this version and requires glibc-2.3.3.

Is it possible to have multiple glibcs installed on the same host?

This is the error I get when I run my program on the old glibc:

./myapp: /lib/i686/libc.so.6: version `GLIBC_2.3' not found (required by ./myapp)
./myapp: /lib/i686/libpthread.so.0: version `GLIBC_2.3.2' not found (required by ./myapp)
./myapp: /lib/i686/libc.so.6: version `GLIBC_2.3' not found (required by ./libxerces-c.so.27)
./myapp: /lib/ld-linux.so.2: version `GLIBC_2.3' not found (required by ./libstdc++.so.6)
./myapp: /lib/i686/libc.so.6: version `GLIBC_2.3' not found (required by ./libstdc++.so.6)

So I created a new directory called newglibc and copied the following files in:

libpthread.so.0
libm.so.6
libc.so.6
ld-2.3.3.so
ld-linux.so.2 -> ld-2.3.3.so

and

export LD_LIBRARY_PATH=newglibc:$LD_LIBRARY_PATH

But I get an error:

./myapp: /lib/ld-linux.so.2: version `GLIBC_PRIVATE' not found (required by ./newglibc/libpthread.so.0)
./myapp: /lib/ld-linux.so.2: version `GLIBC_2.3' not found (required by libstdc++.so.6)
./myapp: /lib/ld-linux.so.2: version `GLIBC_PRIVATE' not found (required by ./newglibc/libm.so.6)
./myapp: /lib/ld-linux.so.2: version `GLIBC_2.3' not found (required by ./newglibc/libc.so.6)
./myapp: /lib/ld-linux.so.2: version `GLIBC_PRIVATE' not found (required by ./newglibc/libc.so.6)

So it appears that they are still linking to /lib and not picking up from where I put them.


Solution

  • It is very possible to have multiple versions of glibc on the same system (we do that every day).

    However, you need to know that glibc consists of many pieces (200+ shared libraries) which all must match. One of the pieces is ld-linux.so.2, and it must match libc.so.6, or you'll see the errors you are seeing.

    The absolute path to ld-linux.so.2 is hard-coded into the executable at link time, and can not be easily changed after the link is done (Update: can be done with patchelf; see this answer below).

    To build an executable that will work with the new glibc, do this:

    g++ main.o -o myapp ... \
       -Wl,--rpath=/path/to/newglibc \
       -Wl,--dynamic-linker=/path/to/newglibc/ld-linux.so.2
    

    The -rpath linker option will make the runtime loader search for libraries in /path/to/newglibc (so you wouldn't have to set LD_LIBRARY_PATH before running it), and the -dynamic-linker option will "bake" path to correct ld-linux.so.2 into the application.

    If you can't relink the myapp application (e.g. because it is a third-party binary), not all is lost, but it gets trickier. One solution is to set a proper chroot environment for it. Another possibility is to use rtldi and a binary editor.

    Update: or you can use patchelf on existing binaries to redirect them to the alternate libc.