I finally determined that this function is responsible for the majority of my bottleneck issues. I think its because of the massively excessive random access that happens when most of the synapses are already active. Basically, as the title says, I need to somehow optimize the algorithm so that I'm not randomly checking a ton of active elements before landing on one of the few that are left.
Also, I included the whole function in case of other flaws that can be spotted.
void NetClass::Explore(vector <synapse> & synapses, int & n_syns) //add new synapses
{
int size = synapses.size();
assert(n_syns <= size );
//Increase the age of each active synapse by 1
Age_Increment(synapses);
//make sure there is at least one inactive vector left
if(n_syns == size)
return;
//stochastically decide whether a new connection is added
if((rand_r(seedp) %1000) < ( x / (1 +(n_syns * ( y / 100)))))
{
n_syns++; //a new synapse has been created
//main inefficiency here
while(1)
{
int syn = rand_r(seedp) % (size);
if (!synapses[syn].active)
{
synapses[syn].active = true;
synapses[syn].weight = .04 + (float (rand_r(seedp) % 17) / 100);
break;
}
}
}
}
void NetClass::Age_Increment(vector <synapse> & synapses)
{
for(int q=0, int size = synapses.size(); q < size; q++)
if(synapses[q].active)
synapses[q].age++;
}
Pass a random number, k
, in the range [0, size-n_syns)
to Age_Increment
. Have Age_Increment
return the k
th empty slot.