In our program we use a genetic algorithm since years to sole problems for n variables, each having a fixed set of m possible values. This typically works well for ~1,000 variables and 10 possibilities.
Now i have a new task where only two possibilities (on/off) exist for each variable, but i'll probably need to solve systems with 10,000 or more variables. The existing GA does work but the solution improves only very slowly.
All the EA i find are designed rather for continuous or integer/float problems. Which one is best suited for binary problems?
Like DonAndre said, canonical GA was pretty much designed for binary problems.
However...
No evolutionary algorithm is in itself a magic bullet (unless it has billions of years runtime). What matters most is your representation, and how that interacts with your mutation and crossover operators: together, these define the 'intelligence' of what is essentially a heuristic search in disguise. The aim is for each operator to have a fair chance of producing offspring with similar fitness to the parents, so if you have domain-specific knowledge that allows you to do better than randomly flipping bits or splicing bitstrings, then use this.
Roulette and tournament selection and elitism are good ideas (maybe preserving more than 1, it's a black art, who can say...). You may also benefit from adaptive mutation. The old rule of thumb is that 1/5 of offspring should be better than the parents - keep track of this quantity and vary the mutation rate appropriately. If offspring are coming out worse then mutate less; if offspring are consistently better then mutate more. But the mutation rate needs an inertia component so it doesn't adapt too rapidly, and as with any metaparameter, setting this is something of a black art. Good luck!