I have 100 matrix, I need do same analyse for all.
###DADOSEXEMPLO##
vetor <- c(1, 5, 3, 8, 2, 9, 3, 2:15, 1, 5, 3, 6, 5, 9, 3 )
matrixnet(vetor, 7, 7)
matrixnet<-matrix(vetor, 7, 7)
matcor <- cor(matrixnet, method = "spearman")
matrixnetwork = graph.adjacency(matcor, mode="undirected", weighted
= TRUE,
add.colnames=NULL, diag=FALSE)
plot(matrixnetwork)
matrix
Here I utilize boot with permute in igraph pacote, I don't know if it is correct!! Help
###BOOT
N <- 7L
set.seed(2023)
R <- 100L
BIPERMUT<- vector("list", length = R)
for(i in seq.int(R)) {
indices <- sample(N, replace = TRUE)
BIPERMUT[[i]] <- permute(matrixnetwork,
sample(vcount(matrixnetwork)))
##ANALYSE
degree(BIPERMUT[[1]], normalized = FALSE, loops = FALSE)
I try, but this not run the analyse 100x, this resample 100x:
for(i in seq.int(R)) {
indices <- sample(N, replace = TRUE)
boot_degree= degree(g_boot_list[[i]], normalized = FALSE, loops =
FALSE)
I try this form too for boot in matrix:
######Matrix permutation#####
N <- 7L
set.seed(2023)
R <- 100L
BIPERMUT<- vector("list", length = R)
for(i in seq.int(R)) {
indices <- sample(N, replace = TRUE)
BIPERMUT[[i]] <- permute(matrixnetwork,
sample(vcount(matrixnetwork)))
}
plot (BIPERMUT[[1]])
I try too, for permutation matrix, here I utilise only sample:
N <- 7L
set.seed(2023)
R <- 100L
BIboot2 <- vector("list", length = R)
for(i in seq.int(R)) {
indices <- sample(N, replace = TRUE)
BIboot2[[i]] <- matrixnetwork
}
plot (BIboot2[[1]])
degree(BIboot2[[1]], normalized = FALSE, loops = FALSE)
Help me find the best solution for permutation in 100x to matrixnetwork ...
I try
boot_degree <- lapply(AIPERMUT, degree, normalized = FALSE, loops =
FALSE)
degree_cool <- do.call("rbind", boot_degree)
but I need him to understand that a variable is allocated to different columns in each row, and he can always pull the same variable to a specific column
Create the results vector boot_degree
before the for
loop.
boot_degree <- vector("list", R)
for(i in seq.int(R)) {
boot_degree[[i]] <- degree(g_boot_list[[i]], normalized = FALSE, loops = FALSE)
}
Another way is to lapply
function degree
to each member of g_boot_list
.
boot_degree2 <- lapply(g_boot_list, degree, normalized = FALSE, loops = FALSE)
identical(boot_degree, boot_degree2) # TRUE