Search code examples
tensorflowdeep-learningpytorchhuggingface-transformersbert-language-model

Is it possible to train a deep learning model using low precision and subsequently fine-tune it with high precision?


Assuming a BERT model is trained on fp16 and then fine-tuned on fp32 for a specific task, would this result in an increase or decrease in accuracy?

It can take less memory on GPU, training time will be reduced.


Solution

  • What you're referring to is called mixed-precision training, and it's basically training the model with low-precision floating-point numbers (e.g., fp16) for most of the layers and using high-precision numbers (e.g., fp32) only for certain layers that require more accuracy. Fine-tuning a low-precision model with high precision on accuracy can vary depending on the specific model and task. In some cases, fine-tuning can result in an increase in accuracy, while in other cases it may not. here is a quick and dirty script to try for mixed precision, to see if it is worth trying as a temperature check:

    import tensorflow as tf
    import tensorflow_datasets as tfds
    import tensorflow_text as text
    import numpy as np
    import os
    import json
    import math
    import time
    
    # Set mixed precision policy
    policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16')
    tf.keras.mixed_precision.experimental.set_policy(policy)
    
    # Load BERT model and tokenizer
    bert_model_name = 'bert-base-cased'
    bert_dir = f'bert_models/{bert_model_name}'
    tokenizer = BertTokenizer.from_pretrained(bert_dir)
    bert_model = TFBertForSequenceClassification.from_pretrained(bert_dir)
    
    # Define optimizer
    optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5)
    
    # Define loss function
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    
    # Define metrics
    metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
    
    # Define batch size
    batch_size = 32
    
    # Load training data
    train_data = tfds.load('glue/mrpc', split='train', shuffle_files=True)
    train_data = train_data.batch(batch_size)
    
    # Fine-tune BERT model
    epochs = 5
    for epoch in range(epochs):
        start_time = time.time()
        metric.reset_states()
        for batch_idx, data in enumerate(train_data):
            input_ids = data['input_ids']
            attention_mask = data['attention_mask']
            token_type_ids = data['token_type_ids']
            labels = data['label']
            
            # Cast input data to mixed precision
            input_ids = tf.cast(input_ids, tf.float16)
            attention_mask = tf.cast(attention_mask, tf.float16)
            token_type_ids = tf.cast(token_type_ids, tf.float16)
            labels = tf.cast(labels, tf.float16)
            
            with tf.GradientTape() as tape:
                outputs = bert_model(input_ids, attention_mask, token_type_ids)
                loss_value = loss(labels, outputs.logits)
                
            grads = tape.gradient(loss_value, bert_model.trainable_weights)
            optimizer.apply_gradients(zip(grads, bert_model.trainable_weights))
            metric.update_state(labels, outputs.logits)
            
        epoch_time = time.time() - start_time
        print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss_value:.4f}, Accuracy: {metric.result().numpy():.4f}, Time: {epoch_time:.2f}s')