I'm loading a model from TFHub via the loadGraphModel
of @tensorflow/tfjs-converter
package.
loadModel = function () {
return __awaiter(this, void 0, void 0, function () {
return __generator(this, function (_a) {
return [2, tfconv.loadGraphModel('https://tfhub.dev/tensorflow/tfjs-model/toxicity/1/default/1', { fromTFHub: true })];
});
});
};
This works fine. I have then downloaded the model locally for offline prediction:
.
├── group1-shard1of7
├── group1-shard2of7
├── group1-shard3of7
├── group1-shard4of7
├── group1-shard5of7
├── group1-shard6of7
├── group1-shard7of7
├── model.json
└── vocab.json
and I would like to load now this model locally. For other models, I was using the method tfjs.loadLayersModel(this.path)
that support file protocol file://
, but if I try to load this model I get the following error
'className' and 'config' must set.
In fact in the model.json
these keys are missing.
I have tried to load the graph from the hub in this way:
var loadGraphModel = function () {
return new Promise(function (resolve, reject) {
tfconv.loadGraphModel(
'https://tfhub.dev/tensorflow/tfjs-model/toxicity/1/default/1',
{ fromTFHub: true })
.then(res => {
console.log(res)
resolve(res);
})
.catch(err => reject(err));
});
}
GraphModel {
modelUrl: 'https://tfhub.dev/tensorflow/tfjs-model/toxicity/1/default/1/model.json?tfjs-format=file',
loadOptions: { fromTFHub: true },
version: 'undefined.undefined',
handler: HTTPRequest {
DEFAULT_METHOD: 'POST',
weightPathPrefix: undefined,
onProgress: undefined,
fetch: [Function],
path: 'https://tfhub.dev/tensorflow/tfjs-model/toxicity/1/default/1/model.json?tfjs-format=file',
requestInit: {}
},
artifacts: {
modelTopology: { node: [Array], library: {}, versions: {} },
weightSpecs: [
...
So how to load this TFHub GraphModel
locally like saving and reloading from local file system?
for tf_saved_model -
Host the model files and shard bins on s3/localfilesystem setup with CORS.
I ended up doing this
npm install http-server -g
# where model files are stored
http-server -p 3004 --cors
On the React end using tensorflow-js
import * as tf from "@tensorflow/tfjs";
import { loadGraphModel } from "@tensorflow/tfjs-converter";
const net = await loadGraphModel("http://localhost:3004/tfjsexport/model.json");
const img = tf.browser.fromPixels(video);
const resized = tf.image.resizeBilinear(img, [640, 480]);
const casted = resized.cast("int32");
const expanded = casted.expandDims(0);
const obj = await net.executeAsync(expanded);