I have data that looks like this:
library(dplyr)
Data <- tibble(
ID = c("Code001", "Code001","Code001","Code002","Code002","Code002","Code002","Code002","Code003","Code003","Code003","Code003"),
Value = c(107,107,107,346,346,346,346,346,123,123,123,123))
I need to work out the average value per group per row. However, the value needs to be rounded (so no decimal places) and the group sum needs to equal the group sum of Value
.
So solutions like this won't work:
Data %>%
add_count(ID) %>%
group_by(ID) %>%
mutate(Prop_Value_1 = Value/n,
Prop_Value_2 = round(Value/n))
Is there a solution that can produce an output like this:
Data %>%
mutate(Prop_Value = c(35,36,36,69,69,69,69,70,30,31,31,31))
Can use ceiling
and then row_number
to get there:
Data %>%
group_by(ID) %>%
mutate(count = n(),
ceil_avg = ceiling(Value/count)) %>%
mutate(sum_ceil_avg = sum(ceil_avg),
diff_sum = sum_ceil_avg - Value,
rn = row_number()) %>%
mutate(new_avg = ifelse(rn <= diff_sum,
ceil_avg - 1,
ceil_avg))
# A tibble: 12 × 8
# Groups: ID [3]
ID Value count ceil_avg sum_ceil_avg diff_sum rn new_avg
<chr> <dbl> <int> <dbl> <dbl> <dbl> <int> <dbl>
1 Code001 107 3 36 108 1 1 35
2 Code001 107 3 36 108 1 2 36
3 Code001 107 3 36 108 1 3 36
4 Code002 346 5 70 350 4 1 69
5 Code002 346 5 70 350 4 2 69
6 Code002 346 5 70 350 4 3 69
7 Code002 346 5 70 350 4 4 69
8 Code002 346 5 70 350 4 5 70
9 Code003 123 4 31 124 1 1 30
10 Code003 123 4 31 124 1 2 31
11 Code003 123 4 31 124 1 3 31
12 Code003 123 4 31 124 1 4 31