I am looking to use the _Generic preprocessor directive to achieve function overloading. I learned to use it from this wonderfully detailed answer.
However, it doesn't seem to cover this case:
#include <stdio.h>
void foo_one(int);
void foo_two(int, float*);
#define FIRST_VARG(_A, ...) _A
#define foo(_X, ...) _Generic( (FIRST_VARG(__VA_ARGS__,)), \
float* : foo_two, \
default : foo_one) (_X, __VA_ARGS__)
void foo_one(int A)
{
printf("FOO ONE: %d\n", A);
}
void foo_two(int A, float* B)
{
printf("FOO TWO: %d, %f", A, *B);
}
void main()
{
float x = 3.14;
float* y = &x;
foo(1); // This statement pops an error
foo(2, y);
}
Here, you can see that the first argument to both functions is an integer. However, the second argument of the second function is a float*. Visual Studio complains about the calling foo(1)
, but not when calling foo(2, y)
. The error is
error C2059: syntax error: ')'
I know Visual Studio can support _Generic with a small trick. So, I feel like there is something I am doing wrong. There is a comment in the answer where I learned about _Generic that suggests using (SECOND(0, ##__VA_ARGS__, 0)
, etc. But I don't understand it.
Can someone walk me through how I could achieve my intended result?
There are two issues. First is selecting the second argument of foo
for generic selection in the case when there is no second argument.
Other is #define foo(_X, ...)
which will not work for foo(1)
because the function macro expect two or more arguments. It often works but it a compiler specific extensions. Compiling in pedantic mode will raise a warning. See https://godbolt.org/z/z7czvGvbc
A related issue is expanding to (_X, __VA_ARGS__)
which will not work for foo(1)
where ...
maps to nothing.
The both issues can be addressed with placing a dummy type (NoArg
) at the end of the list prior to extracting the second argument. It will both extend the list and add a value that can be used by _Generic
to correctly dispatch the function expression.
#include <stdio.h>
void foo_one(int);
void foo_two(int, float*);
typedef struct { int _; } NoArg;
// use compound literal to form a dummy value for _Generic, only its type matters
#define NO_ARG ((const NoArg){0})
#define foo_(args, a, b, ...) \
_Generic((b) \
,NoArg: foo_one \
,default: foo_two \
) args
// pass copy of args as the first argument
// add NO_ARG value, only its type matters
// add dummy `~` argument to ensure that `...` in `foo_` catches something
#define foo(...) foo_((__VA_ARGS__), __VA_ARGS__, NO_ARG, ~)
void foo_one(int A)
{
printf("FOO ONE: %d\n", A);
}
void foo_two(int A, float* B)
{
printf("FOO TWO: %d, %f\n", A, B ? *B : 42.0f);
}
#define TEST 123
int main(void)
{
float x = 3.14;
float* y = &x;
foo(1); // This statement pops an error
foo(2, y);
foo(TEST, NULL);
return 0;
}
The last issue is addressed by passing a tuple with original arguments as extra argument to foo_
macro, this argument is later passed to the call operator of expression selected by _Generic
.
This solution works with all major C17 compilers (gcc, clang, icc, msvc).