Search code examples
javamodulo

How to get the correct output in Modulo (10^9 + 7) format?


I am working on this code challenge:

Problem Description

Given 2 integers x and n, you have to calculate x to the power of n, modulo 10^9+7 i.e. calculate (x^n) % (10^9+7).

In other words, you have to find the value when x is raised to the power of n, and then modulo is taken with 10^9+7.

a%b means the remainder when a divides b. For instance, 5%3 = 2, as when we divide 5 by 3, 2 is the remainder.

Note that 10^9 is also represented as 1e9.

Input format One line of input containing two space separated integers, x and n.

Output format Print the required answer.

Sample Input 1 100000000 2

Sample Output 1 930000007

Explanation 1 (10^8)^2 = 10^16

10^16 % (10^9+7) = 930000007

Constraints 0 <= x < 10^9

0 <= n < 10^5

Code

The following is my code:

import java.util.*;

class ModularExponentiation {
    // NOTE: Please do not modify this function
    public static void main(String args[]) {
        Scanner sc = new Scanner(System.in);
        int x = sc.nextInt();
        int n = sc.nextInt();

        int ans = modularExponentiation(x, n);
        System.out.println(ans);
    }

    // TODO: Implement this method
    static int modularExponentiation(int x, int n) {
        int M = 1000000007;
        long a = (long) Math.pow(x, n);

        long b = a%M;

        return (int)b;
    }
}

When I run my code, it succeeds for the sample test case and an edge case, but fails for 3 base cases. How do I make my code succeed all test cases?


Solution

  • Does this work?

        public static int modularExponentiation(int x, int n) {
            int modulo = 1000000007;
            if (n == 0) {
                return 1;
            } else if (n == 1) {
                return x % modulo;
            } else if (n == -1) {
                return 1 / x;
            }
            int p = modularExponentiation(x, n >> 1);
            long product = ((long) p * p) % modulo;
            return (int) (product * modularExponentiation(x, n & 1) % modulo);
        }
    

    Key points:

    1. Math.pow(x,n) suffers from overflow and we can't compensate that overflow relying on result only, that is why initial idea of Math.pow(x,n) % modulo produces wrong results
    2. We may notice that (x * x) % modulo == (x % modulo) * (x % modulo) % modulo, and it is safe to use long here as intermediate result because x % modulo < modulo and modulo * modulo < 2^63 - 1
    3. We need to reconstruct the process, but naive approach that x^n is a product of n x's is too slow - it has O(N) time complexity, however we may notice that x^2k == (x^k)^2 and x^(2k+1) == x * (x^k)^2 - so we may use either recursion here or loop to achieve O(LogN) time complexity

    alternative loop solution:

        public static int modularExponentiation(int x, int n) {
            int modulo = 1000000007;
            long product = 1;
            long p = x;
            while (n != 0) {
                if ((n & 1) == 1) {
                    product = product * p % modulo;
                }
                p = (p * p % modulo);
                n >>= 1;
            }
            return (int) product;
        }