I am testing outcomes of tf.keras.losses.CategoricalCrossEntropy
, and it gives me values different from the definition.
My understanding of cross entropy is:
def ce_loss_def(y_true, y_pred):
return tf.reduce_sum(-tf.math.multiply(y_true, tf.math.log(y_pred)))
And lets say I have values like this:
pred = [0.1, 0.1, 0.1, 0.7]
target = [0, 0, 0, 1]
pred = tf.constant(pred, dtype = tf.float32)
target = tf.constant(target, dtype = tf.float32)
pred_2 = [0.1, 0.3, 0.1, 0.7]
target = [0, 0, 0, 1]
pred_2 = tf.constant(pred_2, dtype = tf.float32)
target = tf.constant(target, dtype = tf.float32)
By the definition I think it should disregard the probabilities in the non-target classes, like this:
ce_loss_def(y_true = target, y_pred = pred), ce_loss_def(y_true = target, y_pred = pred_2)
(<tf.Tensor: shape=(), dtype=float32, numpy=0.35667497>,
<tf.Tensor: shape=(), dtype=float32, numpy=0.35667497>)
But tf.keras.losses.CategoricalCrossEntropy
doesn't give me the same results:
ce_loss_keras = tf.keras.losses.CategoricalCrossentropy()
ce_loss_keras(y_true = target, y_pred = pred), ce_loss_keras(y_true = target, y_pred = pred_2)
outputs:
(<tf.Tensor: shape=(), dtype=float32, numpy=0.35667497>,
<tf.Tensor: shape=(), dtype=float32, numpy=0.5389965>)
What am I missing?
Here is the link to the notebook I used to get this result: https://colab.research.google.com/drive/1T69vn7MCGMSQ8hlRkyve6_EPxIZC1IKb#scrollTo=dHZruq-PGyzO
I found out what the problem was. The vector elements get scaled automatically somehow, to sum up to 1 because the values are probabilities.
import tensorflow as tf
ce_loss = tf.keras.losses.CategoricalCrossentropy()
pred = [0.05, 0.2, 0.25, 0.5]
target = [0, 0, 0, 1]
pred = tf.constant(pred, dtype = tf.float32)
target = tf.constant(target, dtype = tf.float32)
pred_2 = [0.1, 0.3, 0.1, 0.5] # pred_2 has P(class2) = 0.3, instead of P(class2) = 0.1.
target = [0, 0, 0, 1]
pred_2 = tf.constant(pred_2, dtype = tf.float32)
target = tf.constant(target, dtype = tf.float32)
c1, c2 = ce_loss(y_true = target, y_pred = pred), ce_loss(y_true = target, y_pred = pred_2)
print("CE loss at dafault value: {}. CE loss with different probability of non-target classes:{}".format(c1,c2))
gives
CE loss at default value: 0.6931471824645996.
CE loss with with different probability of non-target classes:0.6931471824645996
As intended.