I have the following dataframe and want to group by the grp
column to see how many of each column-value appears in each group.
> data.frame(grp = unlist(strsplit("aabbccca", "")), col1=unlist(strsplit("ABAABBAB", "")), col2=unlist(strsplit("BBCCCCDD", "")))
grp col1 col2
1 a A B
2 a B B
3 b A C
4 b A C
5 c B C
6 c B C
7 c A D
8 a B D
Desired result:
grp col1A col1B col2B col2C col2D
1 a 1 2 2 0 1
2 b 2 0 0 2 0
3 c 1 2 0 2 1
If I only look at the grp
and col1
columns, it is easy to solve this using table()
and when there are only 2 columns, I could merge table(df[c('grp', 'col1')])
with table(df[c('grp', 'col2')])
. However, this gets extremely cumbersome as the number of factor columns grows, and is problematic if there are shared values between col1
and col2
.
Note that dplyr's count doesn't work, as it looks for unique combinations of the col1 and col2.
I've tried melting and spreading the dataframe using tidyr, without any luck
> pivot_longer(df, c(col1, col2), names_to= "key", values_to = "val") %>% pivot_wider("grp", names_from = c("key", "val"), values_from = 1, values_fn = sum)
Error in `stop_subscript()`:
! Can't subset columns that don't exist.
x Column `grp` doesn't exist.
I can find plenty of solutions that work for the case where I have 1 group column and 1 value column, but I can't figure out how to generalize them to more columns.
You can stack col1
& col2
together, count the number of each combination, and then transform the table to a wide form.
library(dplyr)
library(tidyr)
df %>%
pivot_longer(col1:col2) %>%
count(grp, name, value) %>%
pivot_wider(grp, names_from = c(name, value), names_sort = TRUE,
values_from = n, values_fill = 0)
# A tibble: 3 x 6
grp col1_A col1_B col2_B col2_C col2_D
<chr> <int> <int> <int> <int> <int>
1 a 1 2 2 0 1
2 b 2 0 0 2 0
3 c 1 2 0 2 1
A base
solution (Thank @GKi to refine the code):
table(cbind(df["grp"], col=do.call(paste0, stack(df[-1])[2:1])))
col
grp col1A col1B col2B col2C col2D
a 1 2 2 0 1
b 2 0 0 2 0
c 1 2 0 2 1