I'm creating a solidity contract for an NFT and in my mint
function I'm not sure if a call to totalSupply()
vs using a token counter and incrementing it is better practice. Does either variation cost more gas? Is one the more standard practice? I've seen examples of both being used.
Variation 1:
contract MyNFT is ERC721Enumerable, PaymentSplitter, Ownable {
using Counters for Counters.Counter;
Counters.Counter private currentTokenId;
...
function mint(uint256 _count)
public payable
{
uint256 tokenId = currentTokenId.current();
require(tokenId < MAX_SUPPLY, "Max supply reached");
for(uint i = 0; i < _count; ++i){
currentTokenId.increment();
uint256 newItemId = currentTokenId.current();
_safeMint(msg.sender, newItemId);
}
}
}
Variation 2:
function mint(uint256 _count)
public payable
{
uint supply = totalSupply();
require( supply + _count <= MAX_SUPPLY, "Exceeds max supply." );
for(uint i = 0; i < _count; ++i){
_safeMint(msg.sender, supply + i);
}
}
Both versions seem to work. I just want to be sure I'm using the most efficient / secure. Thanks for any advice!
First off all, you need to show us the underlying implementations. However, I can speculate that these are unmodified openzeppelin implementations for ERC721Enumerable and Counters.
For your case only, using Counter
seems a little bit pointless to me.
I am not guaranteeing correctness of the following analysis
Calling totalSupply
(looking from opcode point of view) will:
However, while using Counter
, you sstore
(>= 5000 gas) each time you decrement and sload
(200 gas) each time you read.
As long as i am not mistaken about Counter using storage, and therefore sstore
and sload
opcodes, second variant will use much less gas.