Slic can implement segmentation under binarized masks, as shown in the figure below
from https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_mask_slic.html
But if I need to divide the superpixels of different adjacent regions, what should I do?
Each color represents an area, each region requires independent superpixel segmentation
There is not currently any way to handle a mask with multiple regions in a single call. For your use case you will have to split each region into a separate mask and then call slic
once per mask. You can combine the multiple segmentations into one by incrementing the labels appropriately.
Pasted below is a concrete example of this for two separate masked regions (adapted from the existing example you referenced):
import matplotlib.pyplot as plt
import numpy as np
from skimage import data
from skimage import color
from skimage import morphology
from skimage import segmentation
# Input data
img = data.immunohistochemistry()
# Compute a mask
lum = color.rgb2gray(img)
mask = morphology.remove_small_holes(
morphology.remove_small_objects(
lum < 0.7, 500),
500)
mask1 = morphology.opening(mask, morphology.disk(3))
# create a second mask as the inverse of the first
mask2 = ~mask1
segmented = np.zeros(img.shape[:-1], dtype=np.int64)
max_label = 0
# replace [mask2, mask1] with a list of any number of binary masks
for mask in [mask2, mask1]:
# maskSLIC result
m_slic = segmentation.slic(img, n_segments=100, mask=mask, start_label=1)
if max_label > 0:
# offset the labels by the current maximum label
m_slic += max_label
# add the label into the current combined segmentation
segmented += m_slic
# increment max label
max_label += m_slic.max()
# Display result
fig, ax_arr = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(10, 10))
ax1, ax2, ax3, ax4 = ax_arr.ravel()
ax1.imshow(img)
ax1.set_title('Original image')
ax2.imshow(mask, cmap='gray')
ax2.set_title('Mask')
ax3.imshow(segmentation.mark_boundaries(img, m_slic))
ax3.contour(mask, colors='red', linewidths=1)
ax3.set_title('maskSLIC (mask1 only)')
ax4.imshow(segmentation.mark_boundaries(img, segmented))
ax4.contour(mask, colors='red', linewidths=1)
ax4.set_title('maskSLIC (both masks)')
for ax in ax_arr.ravel():
ax.set_axis_off()
plt.tight_layout()
plt.show()
The basic approach I am suggesting is in the for loop above. Most of the other code is just generating the data and plots.