So I would like to use a generic return type and be able to use the info of that type within the function. Not sure this is possible but here is what I would like:
def getStuff[A](a: MyObj, b: String): Option[A] = {
// do some stuff
A match {
case String => Some(a.getString(b))
case Integer => Some(a.getInt(b))
...
case _ => None
}
}
However, as you know, A match
is not a possibility. Any ideas on how I could achieve this ?
This is a classic case for using a typeclass:
trait StuffGetter[T] { // typeclass
def get(obj: MyObj, s: String): Option[T]
}
implicit val stringGetter = new StuffGetter[String] {
def get(o: MyObj, s: String): Option[String] = ???
}
implicit val intGetter = new StuffGetter[Int] {
def get(o: MyObj, s: String): Option[Int] = ???
}
def getStuff[A](a: MyObj, b: String)(implicit ev: StuffGetter[A]): Option[A] =
ev.get(a, b)
val stuff0 = getStuff[String](obj, "Hello") // calls get on stringGetter
val stuff1 = getStuff[Int](obj, "World") // call get on intGetter
val stuff2 = getStuff[Boolean](obj, "!") // Compile-time error
The StuffGetter
trait defines the operations that you want to perform on the generic type, and each implicit
value of that trait provides the implementation for a specific type. (For a custom type these are typically place in the companion object for the type; the compiler will look there for them)
When getStuff
is called the compiler will look for an implicit
instance of StuffGetter
with the matching type. This will fail if no such instance exists, otherwise it will be passed in the ev
parameter.
The advantage of this is that the "match" is done at compile time and unsupported types are also detected at compile time.