Search code examples
javaarraysalgorithmtime-complexitycomputer-science

Computing the volume of the union of axis-aligned cubes


Given is a set S of n axis-aligned cubes. The task is to find the volume of the union of all cubes in S. This means that every volume-overlap of 2 or more cubes is only counted once. The set specifically contains all the coordinates of all the cubes.

I have found several papers regarding the subject, presenting algorithms to complete the task. This paper for example generalizes the problem to any dimension d rather than the trivial d=3, and to boxes rather than cubes. This paper as well as a few others solve the problem in time O(n^1.5) or slightly better. Another paper which looks promising and is specific to 3d-cubes is this one which solves the task in O(n^4/3 log n). But the papers seem rather complex, at least for me, and I cannot follow them clearly.

Is there any relatively simple pseudocode or procedure that I can follow to implement this idea? I am looking for a set of instructions, what exactly to do with the cubes. Any implementation will be also excellent. And O(n^2) or even O(n^3) are fine.


Currently, my approach was to compute the total volume, i.e the sum of all volumes of all the cubes, and then compute the overlap of every 2 cubes, and reduce it from the total volume. The problem is that every such overlap may (or may not) be of a different pair of cubes, meaning an overlap can be for example shared by 5 cubes. In this approach the overlap will be counted 10 times rather just once. So I was thinking maybe an inclusion-exclusion principle may prove itself useful, but I don't know exactly how it may be implemented specifically. Computing every overlap (naively) is already O(n^2), but doable. Is there any better way to compute all such overlaps? Anyways, I don't assume this is a useful approach, to continue along these lines.


Solution

  • I implemented Bentley's algorithm (O(n^2 log n)) in C++. (I know you wanted Java, but C++ is my main ax at work, and templates are just too useful here given that I was considering working my way up to Overmars and Yap.)

    // Import some basic stuff from the standard library.
    #include <algorithm>
    #include <cassert>
    #include <cmath>
    #include <iostream>
    #include <limits>
    #include <memory>
    #include <optional>
    #include <random>
    #include <tuple>
    #include <utility>
    #include <vector>
    
    // Define vocabulary types.
    
    class Interval {
     public:
      Interval(double a, double b) : min_(std::fmin(a, b)), max_(std::fmax(a, b)) {}
    
      double min() const { return min_; }
      double max() const { return max_; }
    
     private:
      double min_, max_;
    };
    
    // Cartesian product of an interval and a set.
    template <typename Projection>
    class IntervalTimes {
     public:
      IntervalTimes(Interval interval, Projection projection)
          : interval_(interval), projection_(projection) {}
    
      Interval interval() const { return interval_; }
      Projection projection() const { return projection_; }
    
     private:
      Interval interval_;
      Projection projection_;
    };
    
    // Zero-dimensional base case.
    struct Interval0 {};
    
    using Interval1 = IntervalTimes<Interval0>;
    using Interval2 = IntervalTimes<Interval1>;
    using Interval3 = IntervalTimes<Interval2>;
    
    using Box = Interval3;
    Box MakeBox(Interval x, Interval y, Interval z) {
      return IntervalTimes{x, IntervalTimes{y, IntervalTimes{z, Interval0{}}}};
    }
    
    // Define basic operations.
    
    double Length(Interval interval) { return interval.max() - interval.min(); }
    
    double Measure(Interval0) { return 1; }
    
    template <typename Projection>
    double Measure(IntervalTimes<Projection> product) {
      return Length(product.interval()) * Measure(product.projection());
    }
    
    bool Contains(Interval interval, double x) {
      return interval.min() < x && x < interval.max();
    }
    
    bool Contains(Interval i1, Interval i2) {
      return i1.min() <= i2.min() && i2.max() <= i1.max();
    }
    
    bool Contains(Box box, double x, double y, double z) {
      return Contains(box.interval(), x) &&
             Contains(box.projection().interval(), y) &&
             Contains(box.projection().projection().interval(), z);
    }
    
    bool Intersects(Interval i1, Interval i2) {
      return std::fmax(i1.min(), i2.min()) < std::fmin(i1.max(), i2.max());
    }
    
    template <typename Projection>
    std::vector<Projection> ProjectEach(
        const std::vector<IntervalTimes<Projection>>& objects) {
      std::vector<Projection> projections;
      projections.reserve(objects.size());
      for (const IntervalTimes<Projection>& object : objects) {
        projections.push_back(object.projection());
      }
      return projections;
    }
    
    template <typename T>
    std::vector<T> Select(const std::vector<bool>& included,
                          const std::vector<T>& objects) {
      std::vector<T> selected;
      for (std::size_t j = 0; j < included.size() && j < objects.size(); j++) {
        if (included[j]) selected.push_back(objects[j]);
      }
      return selected;
    }
    
    // Returns the unique x values that appear in objects, sorted.
    template <typename Projection>
    std::vector<double> Boundaries(
        const std::vector<IntervalTimes<Projection>>& objects) {
      std::vector<double> boundaries;
      boundaries.reserve(objects.size() * 2);
      for (const IntervalTimes<Projection>& object : objects) {
        boundaries.push_back(object.interval().min());
        boundaries.push_back(object.interval().max());
      }
      std::sort(boundaries.begin(), boundaries.end());
      boundaries.erase(std::unique(boundaries.begin(), boundaries.end()),
                       boundaries.end());
      return boundaries;
    }
    
    // The basic offline algorithm for d dimensions uses the online algorithm for
    // d-1 dimensions. Each object gives rise to two events. We sweep over the
    // events, integrating as we go using the online algorithm.
    
    template <typename Object>
    class OnlineMeasure {
     public:
      virtual ~OnlineMeasure() = default;
    
      virtual void Initialize(std::vector<Object>) {}
    
      // Adds the object at index j in the objects presented to Initialize().
      virtual void Add(std::size_t j) = 0;
    
      // Removes the object at index j in the objects presented to Initialize().
      virtual void Remove(std::size_t j) = 0;
    
      // Returns the measure of the union of the objects added but not removed.
      virtual double Measure() const = 0;
    };
    
    enum class Side { kMin, kMax };
    // {x, side, index}.
    using Event = std::tuple<double, Side, std::size_t>;
    
    template <typename Projection>
    double OfflineMeasure(const std::vector<IntervalTimes<Projection>>& objects,
                          OnlineMeasure<Projection>& online_measure) {
      // Construct the events and sort them by x with min before max.
      std::vector<Event> events;
      events.reserve(objects.size() * 2);
      for (std::size_t j = 0; j < objects.size(); j++) {
        Interval interval = objects[j].interval();
        events.push_back({interval.min(), Side::kMin, j});
        events.push_back({interval.max(), Side::kMax, j});
      }
      std::sort(events.begin(), events.end());
    
      // Sweep x to integrate.
      double measure = 0;
      std::optional<double> previous_x;
      online_measure.Initialize(ProjectEach(objects));
      for (const auto& [x, side, j] : events) {
        if (previous_x) measure += (x - *previous_x) * online_measure.Measure();
        previous_x = x;
        switch (side) {
          case Side::kMin:
            online_measure.Add(j);
            break;
          case Side::kMax:
            online_measure.Remove(j);
            break;
        }
      }
      return measure;
    }
    
    // We can use the algorithm above as a slow online algorithm.
    template <typename Projection>
    class OfflineOnlineMeasure : public OnlineMeasure<IntervalTimes<Projection>> {
     public:
      OfflineOnlineMeasure(
          std::unique_ptr<OnlineMeasure<Projection>> online_measure)
          : online_measure_(std::move(online_measure)) {}
    
      void Initialize(std::vector<IntervalTimes<Projection>> objects) override {
        objects_ = std::move(objects);
        included_.assign(objects_.size(), false);
      }
    
      void Add(std::size_t j) override { included_.at(j) = true; }
    
      void Remove(std::size_t j) override { included_.at(j) = false; }
    
      double Measure() const override {
        return OfflineMeasure(Select(included_, objects_), *online_measure_);
      }
    
     private:
      std::unique_ptr<OnlineMeasure<Projection>> online_measure_;
      std::vector<bool> included_;
      std::vector<IntervalTimes<Projection>> objects_;
    };
    
    // Zero-dimensional base case for Klee's algorithm.
    class KleeOnlineMeasure : public OnlineMeasure<Interval0> {
     public:
      void Add(std::size_t) override { multiplicity_++; }
      void Remove(std::size_t) override { multiplicity_--; }
      double Measure() const override { return multiplicity_ > 0 ? 1 : 0; }
    
     private:
      std::size_t multiplicity_ = 0;
    };
    
    double KleeMeasure(const std::vector<Box>& boxes) {
      std::unique_ptr<OnlineMeasure<Interval0>> measure0 =
          std::make_unique<KleeOnlineMeasure>();
      std::unique_ptr<OnlineMeasure<Interval1>> measure1 =
          std::make_unique<OfflineOnlineMeasure<Interval0>>(std::move(measure0));
      OfflineOnlineMeasure<Interval1> measure2(std::move(measure1));
      return OfflineMeasure(boxes, measure2);
    }
    
    // The fundamental insight into Bentley's algorithm is a segment tree that
    // solves the online problem in one dimension.
    class Segment {
     public:
      explicit Segment(Interval interval)
          : left_{nullptr},
            right_{nullptr},
            interval_{interval},
            multiplicity_{0},
            descendant_length_{0} {}
    
      Segment(std::unique_ptr<Segment> left, std::unique_ptr<Segment> right)
          : left_{std::move(left)},
            right_{std::move(right)},
            interval_{left_->interval_.min(), right_->interval_.max()},
            multiplicity_{0},
            descendant_length_{left_->LengthOfUnion() + right_->LengthOfUnion()} {
        assert(left_->interval_.max() == right_->interval_.min());
      }
    
      double LengthOfUnion() const {
        return multiplicity_ > 0 ? Length(interval_) : descendant_length_;
      }
    
      void Add(const Interval i) { Increment(i, 1); }
      void Remove(const Interval i) { Increment(i, -1); }
    
     private:
      void Increment(const Interval i, std::size_t delta) {
        if (Contains(i, interval_)) {
          multiplicity_ += delta;
        } else if (Intersects(i, interval_)) {
          left_->Increment(i, delta);
          right_->Increment(i, delta);
          descendant_length_ = left_->LengthOfUnion() + right_->LengthOfUnion();
        }
      }
    
      // Children.
      std::unique_ptr<Segment> left_;
      std::unique_ptr<Segment> right_;
      // Interval.
      Interval interval_;
      // Adds minus removes for this whole segment.
      std::size_t multiplicity_;
      // Total length from proper descendants.
      double descendant_length_;
    };
    
    std::unique_ptr<Segment> ConstructSegmentTree(
        const std::vector<double>& boundaries) {
      if (boundaries.empty()) return nullptr;
      std::vector<std::unique_ptr<Segment>> segments;
      segments.reserve(boundaries.size() - 1);
      for (std::size_t j = 1; j < boundaries.size(); j++) {
        segments.push_back(
            std::make_unique<Segment>(Interval{boundaries[j - 1], boundaries[j]}));
      }
      while (segments.size() > 1) {
        std::vector<std::unique_ptr<Segment>> parent_segments;
        parent_segments.reserve(segments.size() / 2 + segments.size() % 2);
        for (std::size_t j = 1; j < segments.size(); j += 2) {
          parent_segments.push_back(std::make_unique<Segment>(
              std::move(segments[j - 1]), std::move(segments[j])));
        }
        if (segments.size() % 2 == 1) {
          parent_segments.push_back(std::move(segments.back()));
        }
        segments = std::move(parent_segments);
      }
      return std::move(segments.front());
    }
    
    class BentleyOnlineMeasure : public OnlineMeasure<Interval1> {
     public:
      void Initialize(std::vector<Interval1> intervals) override {
        intervals_ = std::move(intervals);
        root_ = ConstructSegmentTree(Boundaries(intervals_));
      }
    
      void Add(std::size_t j) override { root_->Add(intervals_.at(j).interval()); }
    
      void Remove(std::size_t j) override {
        root_->Remove(intervals_.at(j).interval());
      }
    
      double Measure() const override {
        return root_ != nullptr ? root_->LengthOfUnion() : 0;
      }
    
     private:
      std::vector<Interval1> intervals_;
      std::unique_ptr<Segment> root_;
    };
    
    double BentleyMeasure(const std::vector<Box>& boxes) {
      std::unique_ptr<OnlineMeasure<Interval1>> measure1 =
          std::make_unique<BentleyOnlineMeasure>();
      OfflineOnlineMeasure<Interval1> measure2(std::move(measure1));
      return OfflineMeasure(boxes, measure2);
    }
    
    int main() {
      std::default_random_engine gen;
      std::uniform_real_distribution<double> uniform(0, 1);
      std::vector<Box> boxes;
      static constexpr std::size_t kBoxCount = 20;
      boxes.reserve(kBoxCount);
      for (std::size_t j = 0; j < kBoxCount; j++) {
        boxes.push_back(MakeBox({uniform(gen), uniform(gen)},
                                {uniform(gen), uniform(gen)},
                                {uniform(gen), uniform(gen)}));
      }
      std::cout << KleeMeasure(boxes) << "\n";
      std::cout << BentleyMeasure(boxes) << "\n";
    
      double hits = 0;
      static constexpr std::size_t kSampleCount = 1000000;
      for (std::size_t j = 0; j < kSampleCount; j++) {
        const double x = uniform(gen);
        const double y = uniform(gen);
        const double z = uniform(gen);
        for (const Box& box : boxes) {
          if (Contains(box, x, y, z)) {
            hits++;
            break;
          }
        }
      }
      std::cout << hits / kSampleCount << "\n";
    }