I have binary segmentation masks for 3D arrays in NumPy/Torch. I would like to convert these to bounding boxes (a.k.a. connected components). As a disclaimer, each array can contain multiple connected components/bounding boxes, meaning I can't just take the min and max non-zero index values.
For concreteness, suppose I have a 3D array (I'll use 2D because 2D is easier to visualize) of binary values. I would like to know what the connected components are. For instance, I would like to take this segmentation mask:
>>> segmentation_mask
array([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 0, 1, 0],
[1, 1, 0, 0, 1]], dtype=int32)
and convert it to the connected components, where the connected component have arbitrary labels i.e.
>>> connected_components
array([[1, 0, 0, 0, 0],
[0, 2, 0, 0, 0],
[2, 2, 2, 0, 0],
[2, 2, 0, 3, 0],
[2, 2, 0, 0, 4]], dtype=int32)
How do I do this with 3D arrays? I'm open to using Numpy, Scipy, Torchvision, opencv, any library.
This should work for any number of dimensions:
import numpy as np
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import connected_components
segmentation_mask = np.array([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 0, 1, 0],
[1, 1, 0, 0, 1]], dtype=np.int32)
row = []
col = []
segmentation_mask_reader = segmentation_mask.reshape(-1)
n_nodes = len(segmentation_mask_reader)
for node in range(n_nodes):
idxs = np.unravel_index(node, segmentation_mask.shape)
if segmentation_mask[idxs] == 0:
col.append(n_nodes)
else:
for i in range(len(idxs)):
if idxs[i] > 0:
new_idxs = list(idxs)
new_idxs[i] -= 1
new_node = np.ravel_multi_index(new_idxs, segmentation_mask.shape)
if segmentation_mask_reader[new_node] != 0:
col.append(new_node)
while len(col) > len(row):
row.append(node)
row = np.array(row, dtype=np.int32)
col = np.array(col, dtype=np.int32)
data = np.ones(len(row), dtype=np.int32)
graph = csr_matrix((np.array(data), (np.array(row), np.array(col))),
shape=(n_nodes+1, n_nodes+1))
n_components, labels = connected_components(csgraph=graph)
background_label = labels[-1]
solution = np.zeros(segmentation_mask.shape, dtype=segmentation_mask.dtype)
solution_writer = solution.reshape(-1)
for node in range(n_nodes):
label = labels[node]
if label < background_label:
solution_writer[node] = label+1
elif label > background_label:
solution_writer[node] = label
print(solution)