Search code examples
c++simdavx512simd-librarysynet

AVX-512BW emulation of _mm512_dpbusd_epi32 AVX-512VNNI instruction


There are AVX-512 VNNI instructions starting since Cascade Lake Intel CPU which can accelerate inference of quantized neural networks on CPU. In particular there is a instuction _mm512_dpbusd_epi32 (vpdpbusd) which allows to perform multiplication of 8-bit signed and unsigned integers and accumulate them into 32-bit integer accumulators. There is a pseudo code of this instruction below:

void _mm512_dpbusd_epi32(int32_t sum[16], uint8_t a[16][4], int8_t b[16][4])
{
    for(int i = 0; i < 16; ++i)
        sum[i] += 
            (int)a[i][0]*b[i][0] + (int)a[i][1]*b[i][1] +
            (int)a[i][2]*b[i][2] + (int)a[i][3]*b[i][3];
}

Unfortunately the intel CPUs until Cascade Lake don't have this instruction so there is a question to emulate this one with using of previous extension (for example AVX-512BW). So my question is: How is make this emulation maximal effective as possible?


Solution

  • I think this question does not have one correct answer.

    On the one hand the fast emulation of _mm512_dpbusd_epi32 with using of AVX-512BW extension may be looked as:

    inline __m512i _mm512_dpbusd_epi32_bw_fast(__m512i i32, __m512i u8, __m512i i8)
    {
        __m512i i16 = _mm512_maddubs_epi16(u8, i8); //possible overflow of INT16.
        __m512i _1 = _mm512_set1_epi16(1);
        return _mm512_add_epi32(i32, _mm512_madd_epi16(i16, _1));
    }
    

    This implementation uses only 3 instructions (and all of them are fast). But it can give incorrect result due to possible overflow of INT16 in _mm512_maddubs_epi16 instruction.

    On the other hand correct emulation looks awful and takes 14 instructions (and some of them are notably slow):

    inline __m512i _mm512_hadd_epi32(__m512i a, __m512i b)
    {
        static const __m512i IDX0 = _mm512_setr_epi32(
            0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 
            0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E);
        static const __m512i IDX1 = _mm512_setr_epi32(
            0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F, 
            0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F);
        __m512i ab0 = _mm512_permutex2var_epi32(a, IDX0, b);
        __m512i ab1 = _mm512_permutex2var_epi32(a, IDX1, b);
        return _mm512_add_epi32(ab0, ab1);
    }
    
    inline __m512i _mm512_dpbusd_epi32_bw_exact(__m512i i32, __m512i u8, __m512i i8)
    {
        __m512i u8_i16lo = _mm512_cvtepu8_epi16(_mm512_extracti64x4_epi64(u8, 0));
        __m512i i8_i16lo = _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(i8, 0));
        __m512i i32lo = _mm512_madd_epi16(u8_i16lo, i8_i16lo);
        __m512i u8_i16hi = _mm512_cvtepu8_epi16(_mm512_extracti64x4_epi64(u8, 1));
        __m512i i8_i16hi = _mm512_cvtepi8_epi16(_mm512_extracti64x4_epi64(i8, 1));
        __m512i i32hi = _mm512_madd_epi16(u8_i16hi, i8_i16hi);
        return _mm512_add_epi32(i32, _mm512_hadd_epi32(i32lo, i32hi));
    }