I have used prcomp
function to perform PCA of my data. I can save other data like, center, scale, score, rotation in csv using write.csv
function but I don't know how to save PCA summary.
Data I used
structure(list(Location = c("Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay",
"Luoyuan Bay", "Luoyuan Bay", "Luoyuan Bay"), Serial = 32:52,
Station = c("NDDZ91", "NDDZ92", "NDDZ94", "NDDZ95", "NDDZ96",
"NDDZ97", "NDDZ98", "NDDZ99", "NDDZ103", "NDDZ105", "NDDZ106",
"NDDZ107", "NDDZ112", "NDDZ113", "NDDZ114", "NDDZ115", "NDDZ116",
"NDDZ117", "NDDZ119", "NDDZ122", "NDDZ123"), Longitude = c(119.6875,
119.6641667, 119.7163889, 119.7425, 119.69, 119.7719444,
119.6622222, 119.7544444, 119.6644444, 119.6875, 119.7369444,
119.7672222, 119.6583333, 119.6327778, 119.5991667, 119.6769444,
119.7019444, 119.7419444, 119.6216667, 119.6722222, 119.6408333
), Latitude = c(26.34944444, 26.35972222, 26.36, 26.36027778,
26.37583333, 26.38277778, 26.38638889, 26.39277778, 26.41055556,
26.41972222, 26.42833333, 26.42861111, 26.43361111, 26.44416667,
26.45, 26.45, 26.44805556, 26.44805556, 26.46638889, 26.47166667,
26.4775), Petrolium = c(20.26723856, 35.12860786, 38.00639611,
485.9158071, 6.801285888, 130.2613429, 26.41691724, 21.47363409,
75.24255785, 9.088017875, 17.83869051, 106.4365614, 367.7372615,
26.95847112, 42.01753212, 17.56582294, 72.00256098, 382.5705508,
150.0004825, 452.8679126, 61.51137016), Sulfide = c(15.16,
47.67, 30.23, 75.05, 10.51, 38.75, 21.64, 35.97, 122.53,
6.95, 58.52, 75.92, 92.23, 10.85, 72.1, 28.46, 81.19, 195.59,
42.54, 277.4, 81.67), PAH = c(0.0479, 0.0638, 0.1312, 0.1293,
0.0589, 0.1032, 0.2725, 0.0712, 0.1173, 0.0703, 0.2097, 0.1261,
0.0685, 0.0796, 0.1353, 0.0354, 0.0323, 0.034, 0.0269, 0.0952,
0.0269), OCP = c(0.01071845, 0, 0, 0, 0, 0.004247812, 0,
0, 0, 0.002020821, 0, 0.055799207, 0.003690873, 0.019063717,
0, 0.173323781, 0.010429405, 0, 0, 0.013486877, 0), PES = c(0,
44.15139004, 17.922209, 35.47228577, 0, 66.9289217, 11.62692114,
30.51552678, 57.2039725, 35.11363161, 49.43776022, 83.9088046,
0, 0, 45.56461801, 0, 0, 8.461490717, 29.69151766, 76.46222766,
34.05399385), Acrylic = c(0, 0, 0, 0, 0, 0, 0, 30.51552678,
0, 0, 0, 41.9544023, 0, 0, 0, 0, 0, 0, 0, 0, 0), PP = c(0,
0, 0, 0, 5.263920851, 0, 0, 0, 0, 0, 49.43776022, 0, 186.2662335,
248.4375, 0, 0, 0, 4.230745359, 0, 0, 0), Rayon = c(74.23500995,
58.86852005, 53.766627, 70.94457153, 26.31960425, 0, 69.76152682,
61.03105356, 114.407945, 70.22726323, 49.43776022, 41.9544023,
0, 0, 136.693854, 112.339267, 36.33232944, 16.92298143, 59.38303531,
305.8489106, 102.1619815)), class = "data.frame", row.names = c(NA,
-21L))
CODE I used for PCA
Mydata = read.csv("PCA_Luoyuan.csv")
head(Mydata)
pca = prcomp(Mydata[,6:13], scale. = TRUE)
summary(pca)
You can extract importance
from summary(pca)
.
write.csv(summary(pca)$importance, 'temp.csv')