I have a struct A that inherits from other classes (which I'm not allowed to change). Inside A and it's methods I can call inherited methods (lets say A_method(int i), for example) without problem but when I tried to write a nested struct (lets say In) and call A_method(int i) and there is were I'm stuck.
The initial code looks like this, and I can't change it, is some kind of college assigment.
#include "Player.hh"
struct A : public Player {
static Player* factory () {
return new A;
}
virtual void play () {
}
};
RegisterPlayer(PLAYER_NAME);
Then I tried this:
#include "Player.hh"
struct A : public Player {
static Player* factory () {
return new A;
}
//My code
struct In {
int x;
void do_smthing() {
A_method(x);
}
}
virtual void play () {
}
};
RegisterPlayer(PLAYER_NAME);
Ok, from a beginning I knew I could't do this, for In to see it's parent class it should have a pointer to it but In is a often instantiated object in my code and I wanted to avoid passing this
constantly to a constructor so I tried this aproach:
#include "Player.hh"
struct A : public Player {
static Player* factory () {
return new A;
}
//My code
static struct Aux
A* ptr;
Aux(A* _p) { ptr = _p; }
} aux;
struct In {
int x;
void do_smthing() {
aux.ptr->A_method(x);
}
}
virtual void play () {
//the idea is to call do_smthing() here.
}
};
RegisterPlayer(PLAYER_NAME);
What I want to avoid (if possible) is something like this:
struct In {
int x;
A* ptr;
In (A* _p) : ptr(_p) {}
void do_smthing() {
ptr->A_method(x);
}
}
The main reason for this: I have more struct definitions and they they are instantiated multiple times through the rest of the (omitted) code, and I don't like the idea of seeing In(this)
so many times.
I don't know if I'm completly missing something or what I want to do it's just not possible... Please ask for clarifications if necessary.
(Also, performance is kind of critical, my code will be tested with limited CPU time so I kinda have to avoid expensive approachs if possible. Using C++11)
There is no way you can skip passing the this
pointer. Instead, you could create a helper function in A:
template <typename InnerType, typename ...Params>
InnerType makeInner(Params&&... params)
{
return InnerType(this, std::forward<Params>(params)...);
}
Then you can use
auto * a = A::factory();
auto inner = a->makeInner<A::In>();
I have some suggestions which are not directly related to you question but may help:
A::facotry()
returns a std::unique_ptr<A>
instead of raw pointerthis
pointer could have any impact on the performance. The more important thing is to identify the path that is latency-sensitive and move expensive operations out of those paths.