While making my first approaches to using JMH
to benchmark my class, I encountered a behavior that confuses me, and I'd like to clarify the issue before moving on.
The situation that confuses me:
When I run the benchmarks while the CPU is loaded (78%-80%) by extraneous processes, the results shown by JMH
look quite plausible and stable:
Benchmark Mode Cnt Score Error Units
ArrayOperations.a_bigDecimalAddition avgt 5 264,703 ± 2,800 ns/op
ArrayOperations.b_quadrupleAddition avgt 5 44,290 ± 0,769 ns/op
ArrayOperations.c_bigDecimalSubtraction avgt 5 286,266 ± 2,454 ns/op
ArrayOperations.d_quadrupleSubtraction avgt 5 46,966 ± 0,629 ns/op
ArrayOperations.e_bigDecimalMultiplcation avgt 5 546,535 ± 4,988 ns/op
ArrayOperations.f_quadrupleMultiplcation avgt 5 85,056 ± 1,820 ns/op
ArrayOperations.g_bigDecimalDivision avgt 5 612,814 ± 5,943 ns/op
ArrayOperations.h_quadrupleDivision avgt 5 631,127 ± 4,172 ns/op
Relatively large errors are because I need only a rough estimate right now and I trade precision for quickness deliberately.
But the results obtained without extraneous load on the processor seem amazing to me:
Benchmark Mode Cnt Score Error Units
ArrayOperations.a_bigDecimalAddition avgt 5 684,035 ± 370,722 ns/op
ArrayOperations.b_quadrupleAddition avgt 5 83,743 ± 25,762 ns/op
ArrayOperations.c_bigDecimalSubtraction avgt 5 531,430 ± 184,980 ns/op
ArrayOperations.d_quadrupleSubtraction avgt 5 85,937 ± 103,351 ns/op
ArrayOperations.e_bigDecimalMultiplcation avgt 5 641,953 ± 288,545 ns/op
ArrayOperations.f_quadrupleMultiplcation avgt 5 102,692 ± 31,625 ns/op
ArrayOperations.g_bigDecimalDivision avgt 5 733,727 ± 161,827 ns/op
ArrayOperations.h_quadrupleDivision avgt 5 820,388 ± 546,990 ns/op
Everything seems to work almost twice slower, iteration times are very unstable (may vary from 500 to 1300 ns/op at neighbor iterations) and the errors are respectively unacceptably large.
The first set of results is obtained with a bunch of application running, including Folding@home distribute computations client (FahCore_a7.exe
) which takes 75% of CPU time, a BitTorrent client that actively uses disks, a dozen of tabs in a browser, e-mail client etc. Average CPU load is about 85%. During the benchmark execution FahCore
decreases the load so that Java
takes 25% and total load is 100%.
The second set of results is taken when all unnecessary processes are stopped, CPU is practically idle, only Java
takes it's 25% and a couple of percents are used for system needs.
My CPU is Intel i5-4460, 4 kernels, 3.2 GHz, RAM 32 GB, OS Windows Server 2008 R2.
java version "1.8.0_231"
Java(TM) SE Runtime Environment (build 1.8.0_231-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.231-b11, mixed mode)
The questions are:
The code:
package com.mvohm.quadruple.benchmarks;
// Required imports here
import com.mvohm.quadruple.Quadruple; // The class under tests
@State(value = Scope.Benchmark)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(java.util.concurrent.TimeUnit.NANOSECONDS)
@Fork(value = 1)
@Warmup(iterations = 3, time = 7)
@Measurement(iterations = 5, time = 10)
public class ArrayOperations {
// To do BigDecimal arithmetic with the precision close to this of Quadruple
private static final MathContext MC_38 = new MathContext(38, RoundingMode.HALF_EVEN);
private static final int DATA_SIZE = 0x1_0000; // 65536
private static final int INDEX_MASK = DATA_SIZE - 1; // 0xFFFF
private static final double RAND_SCALE = 1e39; // To provide a sensible range of operands,
// so that the actual calculations don't get bypassed
private final BigDecimal[] // Data to apply operations to
bdOp1 = new BigDecimal[DATA_SIZE], // BigDecimals
bdOp2 = new BigDecimal[DATA_SIZE],
bdResult = new BigDecimal[DATA_SIZE];
private final Quadruple[]
qOp1 = new Quadruple[DATA_SIZE], // Quadruples
qOp2 = new Quadruple[DATA_SIZE],
qResult = new Quadruple[DATA_SIZE];
private int index = 0;
@Setup
public void initData() {
final Random rand = new Random(12345); // for reproducibility
for (int i = 0; i < DATA_SIZE; i++) {
bdOp1[i] = randomBigDecimal(rand);
bdOp2[i] = randomBigDecimal(rand);
qOp1[i] = randomQuadruple(rand);
qOp2[i] = randomQuadruple(rand);
}
}
private static Quadruple randomQuadruple(Random rand) {
return Quadruple.nextNormalRandom(rand).multiply(RAND_SCALE); // ranged 0 .. 9.99e38
}
private static BigDecimal randomBigDecimal(Random rand) {
return Quadruple.nextNormalRandom(rand).multiply(RAND_SCALE).bigDecimalValue();
}
@Benchmark
public void a_bigDecimalAddition() {
bdResult[index] = bdOp1[index].add(bdOp2[index], MC_38);
index = ++index & INDEX_MASK;
}
@Benchmark
public void b_quadrupleAddition() {
// semantically the same as above
qResult[index] = Quadruple.add(qOp1[index], qOp2[index]);
index = ++index & INDEX_MASK;
}
// Other methods are similar
public static void main(String... args) throws IOException, RunnerException {
final Options opt = new OptionsBuilder()
.include(ArrayOperations.class.getSimpleName())
.forks(1)
.build();
new Runner(opt).run();
}
}
The reason was very simple, and I should have understood it immediately. Power saving mode was enabled in the OS, which reduced the clock frequency of the CPU under low load. The moral is, always disable power saving when benchmarking!