There's an already built in way that fulfill my request?
I know Set are unordered
I need to do a vector based Set.
I need to know the position of any value of a generic type to place them in the corresponding index of the array, So I can avoid duplications of the elements.
I'm not ordering or defining an order of the Set. I don't have any operators that missbehave or break any Set Costraint
Please note that I know this implementation is not efficient for any types that seems infinite like Integers.
I need to do it for an educational purpose.
I have already implemented List Ordered and Hash Table based ones.
For now I have this class, that works flawlessy:
package ads
class MySet<E : Enum<E>> {
//More details for clarify
private val maxSet = 127
private var myset = arrayOfNulls<Boolean>(maxSet)
private fun getOrdinal(eelement : E) : Int{
return eelement.ordinal
}
/*
more set operators that needs of getOrdinal
*/
fun insert(xelement: E){
myset[getOrdinal(xelement)] = true
}
}
import ads.MySet as RawSet
enum class MyColors{
Red,
Green,
Blue,
Yellow,
Black,
Mint;
}
fun main() {
val myfavc = RawSet<MyColors>()
val yourfavc = RawSet<MyColors>()
//Following operations...
myfavc.insert(MyColors.Red)
yourfavc.insert(MyColors.Blue)
}
I need now to make another class in the same way but working with whatever abstract type already defined in kotlin.
package ads
class MySet<T> {
//More details for clarify
private val maxSet = 127
private var myset = arrayOfNulls<Boolean>(maxSet)
private fun getOrdinal(telement : T) : Int{
/*
For any abstract type return the order of any element
checks if the integer is not greater than maxSet otherwhise it
throws an Exception or manages this istance in other way
*/
}
/*
more set operators that needs of getOrdinal
*/
fun insert(xelement: T){
myset[getOrdinal(xelement)] = true
}
}
import ads.MySet as RawSeT
//Istance using Int
fun main() {
val myfav = RawSet<Int>()
val yourfav = RawSet<Int>()
//Following operations...
myfav.insert(11)
yourfav.insert(123)
}
I guess there's no built-in way to do so in a generic way. but I'm still learning kotlin, so maybe I'm missing something useful.
I'm not asking to do my paper.
I don't need a full alternative solutions that I should find out by myself but I'm opened to read about any tips or resources that can help me to clarify how abstract types works in Kotlin(or Programming Languages) infos like :
How are ordered.
If any value of any type can be compared based on their position (like c > a for chars).
Range of values/Max values represented for any "apparently infinite" type like Integers.
Thanks you!
P.S. = Please consider that I'm not an english native, be patient!
Enum
s are implicitly ordered in declaration order and amount of instances of each enum is finite, so they could be ordered globally and their ordinal could be represented as Int
.
Int
s (as well as Byte
s and Char
s) are naturally ordered and have ranges (Int.MIN_VALUE..Int.MAX_VALUE
, etc.), so each of them could have an ordinal represented as Int
too.
All types implementing Comparable
interface could be compared in pairs and any subset of their instances could be ordered, but it doesn't mean that each of them have some global Int
ordinal among all possible instances, because set of Int
s is finite (2^32 items), and set of all unique instances of generic type T
could be countably infinite (like BigInteger
) or even uncountable (like Double
) (see wiki about cardinality).
All other types couldn't be even compared in pairs (without respectful Comparator<T>
).
So you need to manually limit instances of each T
that are about to be added in your set and either maually order them or provide respectful Comparator<T>
to construct a Map<T, Int>
which you'll need to use for subsequent ordinal evaluation:
class SetOfSomehowOrderedInstancesOfType<T>(private val order: Map<T, Int>) {
private val maxSet = order.size
private var myset = BooleanArray(order.size)
private fun getOrdinal(eelement: T): Int {
return order[eelement] ?: throw RuntimeException("Order unknown")
}
fun insert(xelement: T) {
myset[getOrdinal(xelement)] = true
}
}
Usage:
fun main() {
val myFavouriteRealNumbersInMyFavouriteOrder =
listOf(99.2123, -2355.12, 1.1, 3.14, 100.0, 123214214215.123331322145)
val myfavc = SetOfSomehowOrderedInstancesOfType<Double>(myFavouriteRealNumbersInMyFavouriteOrder.mapToIndex())
myfavc.insert(99.2123) //will be inserted with ordinal = 0
val myFavouriteRealNumbersInNaturalOrder = myFavouriteRealNumbersInMyFavouriteOrder.sorted()
val yourfavc = SetOfSomehowOrderedInstancesOfType<Double>(myFavouriteRealNumbersInNaturalOrder.mapToIndex())
yourfavc.insert(99.2123) //will be inserted with ordinal = 3
}
Alternatively you may define Orderable
and Ordinator<T>
interfaces (similar to Comparable<T>
and Comparator<T>
) and determine ordinal using them:
fun interface Ordinator<T> {
fun getOrderOf(x : T) : Int
}
interface Orderable {
val order : Int
}
class MySet<T>(private val ordinator: Ordinator<T>? = null) {
private val maxSet = 127
private var myset = BooleanArray(maxSet)
private fun getOrdinal(eelement: T) = when {
eelement is Orderable -> eelement.order
ordinator != null -> ordinator.getOrderOf(eelement)
else -> throw RuntimeException()
}
fun insert(xelement: T) {
myset[getOrdinal(xelement)] = true
}
}
Also you may define auxilary function, generalizing previous approach:
fun <T> ordinatorOf(order: List<T>) = object : Ordinator<T> {
private val order = order.mapToIndex()
override fun getOrderOf(x: T) = this.order[x] ?: throw RuntimeException()
}
Usage:
val stringsOrderedByTheirLength = MySet<String> { it.length }
stringsOrderedByTheirLength.insert("aaa") //will be inserted with ordinal = 3
val myFavouriteRealNumbersInMyFavouriteOrder =
listOf(99.2123, -2355.12, 1.1, 3.14, 100.0, 123214214215.123331322145)
val myfavc = MySet(ordinatorOf(myFavouriteRealNumbersInMyFavouriteOrder))
myfavc.insert(99.2123) //will be inserted with ordinal = 0