I have data in the following format
number_of_tickets : "01-01-2019", "02-01-2019", "03-01-2019"......
date : 1500 , 1200 , "2000......
It is past two years of data and I need to computer total tickets opened yearly and monthly, something like below
Jan Feb Mar....
2019 20570 18702 35078
2020 19794 11325 42723......
I am trying to using package lubridate
and dplyr
to summarize, mutate and many other things but not getting any headsway.
Any help will be appreciated.
with tidyverse and lubridate, you can also proceed
df <- data.frame(
number_of_tickets = c(1500, 1200, 2000, 1000, 2000, 3000),
date = c("01-01-2019", "02-01-2019", "03-02-2019",
"01-01-2020", "02-01-2020", "03-02-2020"))
library(lubridate)
library(tidyverse)
df %>% mutate(month = month(as.Date(date, format = "%d-%m-%Y")),
year = year(as.Date(date, format = "%d-%m-%Y"))) %>%
pivot_wider(id_cols = "year", names_from = month, values_from = number_of_tickets, values_fn = sum)
# A tibble: 2 x 3
year `1` `2`
<dbl> <dbl> <dbl>
1 2019 2700 2000
2 2020 3000 3000
library(pivottabler)
library(lubridate)
df$date <- as.Date(df$date, format = "%d-%m-%Y")
df$Month <- month(df$date)
df$Year <- year(df$date)
qpvt(df, rows = "Month",
columns = "Year",
calculations = "sum(number_of_tickets)")
2019 2020 Total
1 2700 3000 5700
2 2000 3000 5000
Total 4700 6000 10700