I'm trying to implement a Property system in my project similar to Property system in Qt. We just started with some ideas and are in prototyping stage. Basically, what I understood from Qt is, client should be able to pass the get function, set function and property type through some macro in the .h file. So I tried to mimic the same.
Following is my sample code:
Abstract getter class. This type of getter class is a member in Property Class
class AbstractFunc
{
public:
template < typename R >
R Invoke ()
{
return (this)->Invoke ();
}
};
Get Function template: Return values can be T , T&, const T& , T* etc..
template < typename R, class T > class GetterFunction : public AbstractFunc
{
typedef R (T::*GetterFunc) ();
public:
GetterFunction (T * obj, GetterFunc func):m_Obj (obj), m_Func (func)
{
}
R Invoke ()
{
return m_Obj->*(m_Func) ();
}
public:
T * m_Obj;
GetterFunc m_Func;
};
Property Class:
class Property
{
public:
Property (string name, AbstractFunc* getter):m_name (name), m_getter (getter)
{
}
template < typename R > R GetValue ()
{
return m_getter->Invoke < R > ();
}
private:
string m_name;
AbstractFunc* m_getter;
};
Some Window Class:
class Window
{
public:
};
Example window class
class CheckBox :public Window
{
public:
int GetChecked ()
{
return m_checked;
}
void SetChecked (int nChecked)
{
m_checked = nChecked;
}
void AddProperty (string name)
{
m_prop = new Property (name, new GetterFunction< int, Checked >(this, &Checked::GetChecked));
}
int m_checked;
Property *m_prop;
};
main function:
int main ()
{
CheckBox cc;
cc.AddProperty ("Hello");
cout<<"value:"<< cc.m_prop->GetValue<int>();
return 0;
}
PROBLEM: Getter function is remembered as AbstractFunc in Property Class. I want to call 'Invoke' on AbstractFunc* instance and it should invoke the member function and return correct return type. The above code throws error at AbstractFunc::Invoke.
Your AbstractFunc
isn't abstract at all: its Invoke
isn't virtual. So even though GetterFunction
also has a method named Invoke
, that method doesn't actually override AbstractFunc::Invoke
; it just hides it. When you try to call Invoke
through the AbstractFunc*
, it calls AbstractFunc::Invoke
, which goes into infinite recursion and thus produces UB.
I would follow @n.m.'s suggestion to make a class hierarchy like so:
class AbstractFunc {
// lock down construction
AbstractFunc() = default;
public:
template<typename R>
R Invoke();
template<typename R>
bool HasType() const noexcept;
virtual ~AbstractFunc() = default; // need to have SOME virtual method so that we have runtime type info; also a virtual destructor is required anyway
template<typename R>
friend class TypedFunc;
};
template<typename R>
struct TypedFunc : AbstractFunc { // the ONLY instances of AbstractFunc are also instances of specializations of TypedFunc
virtual R InvokeTyped() = 0;
};
// one kind of TypedFunc applies a getter on an object
template<typename R, typename T>
struct GetterFunc : TypedFunc<R> {
// you never see a GetterFunc in the interface anyway... don't see a need to hide these
T *obj; // have you considered std::shared_ptr?
R (T::*getter)();
GetterFunc(T *obj, R (T::*getter)()) : obj(obj), getter(getter) { }
R InvokeTyped() override { return (obj->*getter)(); }
};
template<typename R, typename T>
std::unique_ptr<GetterFunc<R, T>> MakeGetterFunc(T *obj, R (T::*getter)()) {
return std::make_unique<GetterFunc<R, T>>(obj, getter);
}
// another kind applies a functor, etc.
template<typename R, typename F>
struct FunctorFunc : TypedFunc<R> {
F func;
template<typename... G>
FunctorFunc(G&&... args) : func(std::forward<G>(args)...) { }
R InvokeTyped() override { return func(); }
};
This is already usable: if you have an AbstractFunc*
or an AbstractFunc&
, you can dynamic_cast
it down to a TypedFunc
of the expected type (e.g. TypedFunc<int>
). If that succeeds (you get a nonnull pointer or there is no std::bad_cast
exception), then you just call InvokeTyped
without having to know what kind of GetterFunc
/FunctorFunc
/whatever you are actually dealing with. The functions Invoke
and HasType
declared in AbstractFunc
are just sugar to help do this.
template<typename R>
bool AbstractFunc::HasType() const noexcept {
return dynamic_cast<TypedFunc<R> const*>(this);
}
template<typename R>
R AbstractFunc::Invoke() {
return dynamic_cast<TypedFunc<R>&>(*this).InvokeTyped();
// throws std::bad_cast if cast fails
}
Done.
class Property {
std::string name;
std::unique_ptr<AbstractFunc> getter;
public:
Property(std::string name, std::unique_ptr<AbstractFunc> getter) : name(std::move(name)), getter(std::move(getter)) { }
template<typename R>
bool HasType() const noexcept { return getter->HasType<R>(); }
template<typename R>
R GetValue() const { return getter->Invoke<R>(); }
std::string const &GetName() const noexcept { return name; }
};
struct Window {
virtual ~Window() = default;
// doesn't really make sense to add/remove these from outside...
virtual std::vector<Property> GetProperties() = 0;
};
class CheckBox : public Window {
int checked = 0;
public:
int GetChecked() /*const*/ noexcept { return checked; }
void SetChecked(int checked) noexcept { this->checked = checked; }
std::vector<Property> GetProperties() override {
std::vector<Property> ret;
ret.emplace_back("Boxes Checked", MakeGetterFunc(this, &CheckBox::GetChecked));
return ret;
}
};
int main() {
CheckBox cb;
cb.SetChecked(5);
for(auto const &prop : cb.GetProperties()) std::cout << prop.GetName() << ": " << prop.GetValue<int>() << "\n";
}
You could then add e.g. a virtual std::type_info const& GetType() const
or similar to AbstractFunc
if you want to be able to directly get at the type, etc.