Search code examples
rdplyrspecial-charactersrlanginfix-notation

R special characteres or suffix like to name function


Just trying to play with functions and infixes, I was trying to create a symbol to represent the dplyr::everything.

Below is an example, but I also tried with special characters as @ and >>.

library(tidyverse)

data(mtcars)

mtcars %>% 
  as_tibble(rownames = "cars") -> mtcars

`%aa%` <<- function(vars=NULL) dplyr::everything(vars=NULL)

mtcars %>% 
  select(carb, everything)
#> Error: Can't subset columns that don't exist.
#> x Column `everything` doesn't exist.
         
mtcars %>% 
  select(carb, everything())
#> # A tibble: 32 x 12
#>     carb cars          mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear
#>    <dbl> <chr>       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1     4 Mazda RX4    21       6  160    110  3.9   2.62  16.5     0     1     4
#>  2     4 Mazda RX4 …  21       6  160    110  3.9   2.88  17.0     0     1     4
#>  3     1 Datsun 710   22.8     4  108     93  3.85  2.32  18.6     1     1     4
#>  4     1 Hornet 4 D…  21.4     6  258    110  3.08  3.22  19.4     1     0     3
#>  5     2 Hornet Spo…  18.7     8  360    175  3.15  3.44  17.0     0     0     3
#>  6     1 Valiant      18.1     6  225    105  2.76  3.46  20.2     1     0     3
#>  7     4 Duster 360   14.3     8  360    245  3.21  3.57  15.8     0     0     3
#>  8     2 Merc 240D    24.4     4  147.    62  3.69  3.19  20       1     0     4
#>  9     2 Merc 230     22.8     4  141.    95  3.92  3.15  22.9     1     0     4
#> 10     4 Merc 280     19.2     6  168.   123  3.92  3.44  18.3     1     0     4
#> # … with 22 more rows

Didn’t work, and reprex dosen’t allow me render ir, but it is another issue

# mtcars %>%
#   select(carb, %aa% )
# 
# mtcars %>%
#   select(carb, %aa%() )

shurely this worked better, or not

mtcars %>% 
  select(carb, `%aa%` )
#> Error: Can't subset columns that don't exist.
#> x Column `%aa%` doesn't exist.

mtcars %>% 
  select(carb, `%aa%`() )
#> # A tibble: 32 x 12
#>     carb cars          mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear
#>    <dbl> <chr>       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1     4 Mazda RX4    21       6  160    110  3.9   2.62  16.5     0     1     4
#>  2     4 Mazda RX4 …  21       6  160    110  3.9   2.88  17.0     0     1     4
#>  3     1 Datsun 710   22.8     4  108     93  3.85  2.32  18.6     1     1     4
#>  4     1 Hornet 4 D…  21.4     6  258    110  3.08  3.22  19.4     1     0     3
#>  5     2 Hornet Spo…  18.7     8  360    175  3.15  3.44  17.0     0     0     3
#>  6     1 Valiant      18.1     6  225    105  2.76  3.46  20.2     1     0     3
#>  7     4 Duster 360   14.3     8  360    245  3.21  3.57  15.8     0     0     3
#>  8     2 Merc 240D    24.4     4  147.    62  3.69  3.19  20       1     0     4
#>  9     2 Merc 230     22.8     4  141.    95  3.92  3.15  22.9     1     0     4
#> 10     4 Merc 280     19.2     6  168.   123  3.92  3.44  18.3     1     0     4
#> # … with 22 more rows

Created on 2020-12-10 by the reprex package (v0.3.0)

It isn't possible to do or I'm doing something wrong?

Thanks in advance.


Solution

  • If you really want to use an infix operator, you would have to pass two unused symbols (one on either side) to get it through the parser. You can have a sort of pseudo zero-argument infix this way, by using the symbol . as a dummy variable.

    library(dplyr)
    
    `%.%` <- function(a, b) everything()
    
    mtcars %>% 
      select(carb, .%.%.)
    #>                     carb  mpg cyl  disp  hp drat    wt  qsec vs am gear
    #> Mazda RX4              4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4
    #> Mazda RX4 Wag          4 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4
    #> Datsun 710             1 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4
    #> Hornet 4 Drive         1 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3
    #> Hornet Sportabout      2 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3
    #> Valiant                1 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3
    #> Duster 360             4 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3
    #> Merc 240D              2 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4
    #> Merc 230               2 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4
    #> Merc 280               4 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4
    #> Merc 280C              4 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4
    #> Merc 450SE             3 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3
    #> Merc 450SL             3 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3
    #> Merc 450SLC            3 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3
    #> Cadillac Fleetwood     4 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3
    #> Lincoln Continental    4 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3
    #> Chrysler Imperial      4 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3
    #> Fiat 128               1 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4
    #> Honda Civic            2 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4
    #> Toyota Corolla         1 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4
    #> Toyota Corona          1 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3
    #> Dodge Challenger       2 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3
    #> AMC Javelin            2 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3
    #> Camaro Z28             4 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3
    #> Pontiac Firebird       2 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3
    #> Fiat X1-9              1 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4
    #> Porsche 914-2          2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5
    #> Lotus Europa           2 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5
    #> Ford Pantera L         4 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5
    #> Ferrari Dino           6 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5
    #> Maserati Bora          8 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5
    #> Volvo 142E             2 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4