How would one validate a unique constraint using DDD? Let's say that an Entity
has a property name
that must be unique among the system and there is a specific EntityRepository
method nameExists(name): bool
... This is what I found people suggests to do, because the repository is the abstraction of the collection of all the Entity
ies and should be able to perform this check.
So before creating/adding the new Entity
the command / domain service could check for the existence of a newName
against the repository, but I think that this will not always work because of concurrency.
In a concurrent scenario where two transactions are started simultaneously, the EntityRepository
's nameExists
method might return false
for both transactions, and as a result of this two entries with the same name will be incorrectly inserted.
I am sure that I am missing something basic, but the answers I found all point to the repository exists
method - TBH others say that a UNIQUE
constraint should be put on the DB to catch the concurrency case, but what if one uses Event Sourcing or a persistence layer that does not have unique constraints?
| Follow up question |
What if the uniqueness constraint is to be applied in different levels of a hierarchy?
A Container
's name
must be unique in the system and then Child
name
s must be unique inside a Container
.
Let's say that a transactional DB takes care of the uniqueness at the lowest possible level, what about the domain?
Should I still express the uniqueness logic at the domain level, e.g. with a Domain Service for the system-level uniqueness and embedding Child
entities inside the Container
entity and having a business rule (and therefore making Container
the aggregate root)?
Or should I not bother with "replicating" the uniqueness in the domain and (given there are no other rules to apply between the two) split Container
and Child
? Will the domain lack expressiveness then?
I am sure that I am missing something basic
Not something basic.
The term we normally use for enforcing a constraint, like uniqueness, across a set of entities is set validation. Greg Young calls your attention to a specific question:
What is the business impact of having a failure
Most set constraints fall into one of two categories
constraints that need to be true when the system reaches steady state, but may not hold while work is in progress. In business processes, these are often handled by detecting conflicts in the stored data, and then invoking various mitigation processes to resolve the conflict.
constraints that need to be true always.
The first category includes things like double booking a seat on an airplane; it's not necessarily a problem unless both people show up, and even then you can handle it by bumping someone to another seat, or another flight.
In these cases, you make a best effort - you look at a recent copy of the set, make sure there are no conflicts there, then hope for the best (accepting that some percentage of the time, you'll have missed a change).
See Memories, Guesses and Apologies (Pat Helland, 2007).
Second category is the hard one; to ensure the invariant holds you have to lock the entire set to ensure that races don't allow two different writers to insert conflicting information.
Relational databases tend to be really good at set validation - putting the entire set into a single database is going to be the right answer (note the assumption that the set is small enough to fit into a single database -- trying to lock two databases at the same time is hard).
Another possibility is to ensure that only one writer can update the set at any given time -- you don't have to worry about a losing a race when you are the only one running in it.
Sometimes you can lock a smaller set -- imagine, for example, having a collection of locks with numbers, and the hash code for the name tells you which lock you have to grab.
This simplest version of this is when you can use the name as the aggregate identifier itself.
if one uses Event Sourcing or a persistence layer that does not have unique constraints?
Sometimes, you introduce a persistent store dedicated to the set, just to ensure that you can maintain the invariant. See "microservices".
But if you can't change the database, and you can't use a database with the locking guarantees that you need, and the business absolutely has to have the set valid at all times... then you single thread that part of the work.
Everybody that wants to change a name puts a request into a queue, and the one thread responsible for managing the invariant certifies each and every change.
There's no magic; just hard work and trade offs.