my understanding of the entropy formula is that it's used to compute the minimum number of bits required to represent some data. It's usually worded differently when defined, but the previous understanding is what I relied on until now.
Here's my problem. Suppose I have a sequence of 100 '1' followed by 100 '0' = 200 bits. The alphabet is {0,1}, base of entropy is 2. Probability of symbol "0" is 0.5 and "1" is 0.5. So the entropy is 1 or 1 bit to represent 1 bit.
However you can run-length encode it with something like 100 / 1 / 100 / 0 where it's number of bits to output followed by the bit. It seems like I have a representation smaller than the data. Especially if you increase the 100 to much larger number.
I'm using: http://en.wikipedia.org/wiki/Information_entropy as reference at the moment. Where did I go wrong? Is it the probability assigned to symbols? I don't think it's wrong. Or did I get the connection between compression and entropy wrong? Anything else?
Thanks.
Edit
Following some of the answers my followup are: would you apply the entropy formula to a particular instance of a message to try to find out its information content? Would it be valid to take the message "aaab" and say the entropy is ~0.811. If yes then what's the entropy of 1...10....0 where 1s and 0s are repeated n times using the entropy formula. Is the answer 1?
Yes I understand that you are creating a random variable of your input symbols and guessing at the probability mass function based on your message. What I'm trying to confirm is the entropy formula does not take into account the position of the symbols in the message.
Or did I get the connection between compression and entropy wrong?
You're pretty close, but this last question is where the mistake was. If you're able to compress something into a form that was smaller than its original representation, it means that the original representation had at least some redundancy. Each bit in the message really wasn't conveying 1 bit of information.
Because redundant data does not contribute to the information content of a message, it also does not increase its entropy. Imagine, for example, a "random bit generator" that only returns the value "0". This conveys no information at all! (Actually, it conveys an undefined amount of information, because any binary message consisting of only one kind of symbol requires a division by zero in the entropy formula.)
By contrast, had you simulated a large number of random coin flips, it would be very hard to reduce the size of this message by much. Each bit would be contributing close to 1 bit of entropy.
When you compress data, you extract that redundancy. In exchange, you pay a one-time entropy price by having to devise a scheme that knows how to compress and decompress this data; that itself takes some information.
However you can run-length encode it with something like 100 / 1 / 100 / 0 where it's number of bits to output followed by the bit. It seems like I have a representation smaller than the data. Especially if you increase the 100 to much larger number.
To summarize, the fact that you could devise a scheme to make the encoding of the data smaller than the original data tells you something important. Namely, it says that your original data contained very little information.
For a more thorough treatment of this, including exactly how you'd calculate the entropy for any arbitrary sequence of digits with a few examples, check out this short whitepaper.