I'm trying to catch collision event between a dynamic sphere and a static gltf model. I'm building the gltf entity the following way:
const template = document.createElement('a-entity');
template.setAttribute('physics-collider', 'ignoreSleep: false');
template.setAttribute('collision-filter', 'collisionForces: false');
template.setAttribute('body', 'type:static; shape:hull');
// add position, scale, url etc
// ...
template.addEventListener('collisions', e => {
// debugger;
})
This code creates an entity, but there is no wire net around it in debug mode and the collisions
event is not being fired.
For debug purposes I tried different shapes. This creates a cylinder around the entity, but it seems too big. The dynamic shape crosses the cylinder, but the collisions
event is being fired not always, rather rare.
template.setAttribute('body', 'type:static; shape:cylinder');
Then I tried to build the shape manually:
template.setAttribute('body', 'type:static; shape:none');
template.setAttribute('shape', 'shape: cylinder; height: 5;');
In this case I'm getting the following error:
Cannot read property 'bodyOverlapKeeper' of null at NewComponent.<anonymous> (physics-collider.js:34)
So now I'm stuck. Could someone advice what I'm doing wrong. I'd like to use the shape of the gltf model itself. I opened it in blender, but it seems okay, I don't understand why shape:hull
doesn't work.
P. S. : if it matters, I'm using webpack
Meanwhile I was able to implement animated collision mesh for a gltf model. I used a helper function implemented by @Piotr Adam Milewski here. See more details about the function in this answer. Any other suggestions to improve performance are appreciated.
AFRAME.registerComponent('animated-collision-shape', {
init: function () {
this.nodeMap = {};
this.el.setAttribute('body', 'type: static; shape: none;')
this.el.addEventListener('model-loaded', () => {
const size = new THREE.Vector3();
let box = new THREE.Box3().setFromObject(this.el.object3D);
box.getSize(size);
this.offset = new CANNON.Vec3(0, size.y / 2, 0);
let mesh = this.el.getObject3D("mesh");
mesh.traverse(node => {
if (node.isSkinnedMesh) {
this.skinnedMesh = node;
this.nodeMap[node.uuid] = {
mesh: node,
box: new THREE.Box3()
}
}
});
if (!Object.keys(this.nodeMap).length) {
this.nodeMap[0] = {
mesh: this.el.object3D,
box: new THREE.Box3()
};
}
this.el.components["body"].shouldUpdateBody = true;
})
},
remove: function () {
this.removeBoxes();
},
tick: (function () {
const size = new THREE.Vector3();
let common_box_uuid = null;
return function tick() {
if (
!Object.keys(this.nodeMap).length ||
!this.el.body) {
return;
}
let combine = this.data.combine === true
let i = 0;
for (let uuid in this.nodeMap) {
// Non - skinned case
if (!this.nodeMap[uuid].mesh.isSkinnedMesh) {
this.nodeMap[uuid].box.setFromObject(this.el.object3D);
return;
}
// skinned model. Either separate boxes, or combined
if (common_box_uuid && combine) {
utils.SkinnedMeshBBox.expandAABB(this.nodeMap[uuid].mesh, this.nodeMap[common_box_uuid].box);
} else {
utils.SkinnedMeshBBox.getAABB(this.nodeMap[uuid].mesh, this.nodeMap[uuid].box);
common_box_uuid = uuid
}
if (isFinite(this.nodeMap[common_box_uuid].box.max.x)) {
this.nodeMap[common_box_uuid].box.getSize(size);
if (this.el.body.shapes[i]) {
this.el.body.shapes[i].halfExtents = new CANNON.Vec3(size.x / 2, size.y / 2, size.z / 2);
this.el.body.shapes[i].updateConvexPolyhedronRepresentation();
} else {
let shape = new CANNON.Box(new CANNON.Vec3(size.x / 2, size.y / 2, size.z / 2))
this.el.body.addShape(shape, this.offset, shape.orientation);
}
i++;
}
}
this.el.components["body"].shouldUpdateWireframe = true;
};
})()
})