I'm trying classify arrays by object values using a Naive Bayes algorithm, but my result is returning negative values. I want it to return values between 0 and 1 (representing percentage) Here's my classifier
class Bayes{
constructor(...categories) {
this.categories = {};
this.categoryCounts = {};
categories.forEach(category => {
this.categories[category] = {};
this.categoryCounts[category] = 0;
});
}
train(category, dataset) {
this.categoryCounts[category]++;
Object.keys(dataset).forEach(key => {
this.categories[category][key] = (this.categories[category][key] || 0) + dataset[key];
});
};
classify(dataset) {
let scores = {};
let trainingCount = Object.values(this.categoryCounts).reduce((a, b) => a + b );
Object.keys(this.categories).forEach(category => {
scores[category] = 0;
let categoryWords = this.categories[category];
let total = Object.values(categoryWords).reduce((a, b) => a + b );
Object.keys(dataset).forEach(function (key) {
let value = dataset[key];
let s = categoryWords[key] || 0.1;
let i = 0;
while(i<value){
scores[category] += Math.log(s / parseFloat(total));
i++;
}
});
let s = this.categoryCounts[category] || 0.1;
scores[category] += Math.log(s / trainingCount);
});
return scores;
};
};
var b = new Bayes('good', 'bad');
b.train('good', { dry: 1, wet: 0 });
b.train('bad', { dry: 0, wet: 1 });
b.train('good', { dry: 0, wet: 1, green: 1});
b.train('good', { dry: 1, wet: 0, green: 1});
console.log(b.classify({ dry: 0, wet: 1, green: 2}));
Here's the output:
Object {
bad: -5.991464547107982,
good: -3.729701448634191
}
I want to return results in percentage like:
Object {
bad: 0.30,
good: 0.70
}
Thanks in advance
I removed the log function in scores[category] += Math.log(s / trainingCount);
,
class Bayes{
constructor(...categories) {
this.categories = {};
this.categoryCounts = {};
categories.forEach(category => {
this.categories[category] = {};
this.categoryCounts[category] = 0;
});
}
train(category, dataset) {
this.categoryCounts[category]++;
Object.keys(dataset).forEach(key => {
this.categories[category][key] = (this.categories[category][key] || 0) + dataset[key];
});
};
classify(dataset) {
let scores = {};
let trainingCount = Object.values(this.categoryCounts).reduce((a, b) => a + b );
Object.keys(this.categories).forEach(category => {
scores[category] = 0;
let categoryWords = this.categories[category];
let total = Object.values(categoryWords).reduce((a, b) => a + b );
Object.keys(dataset).forEach(function (key) {
let value = dataset[key];
let s = categoryWords[key] || 0.1;
let i = 0;
while(i<value){
scores[category] += Math.log(s / parseFloat(total));
i++;
}
});
let s = this.categoryCounts[category] || 0.1;
scores[category] = (s / trainingCount);
});
return scores;
};
};
var b = new Bayes('good', 'bad');
b.train('good', { dry: 1, wet: 0 });
b.train('bad', { dry: 0, wet: 1 });
b.train('good', { dry: 0, wet: 1, green: 1});
b.train('good', { dry: 1, wet: 0, green: 1});
console.log(b.classify({ dry: 0, wet: 1, green: 2}));